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ABSTRACT

We present a novel approach to alarm sound detection using topolog-
ical data analysis. Our main focus is on proposing a new set of robust
features, based on algebraic topology, that are aimed at capturing
global structural information about the dynamical system underlying
each input signal. In short, we convert each signal into a point cloud
and compute its corresponding persistent homology, from which we
can extract a variety of useful numerical features. We demonstrate
the power of this framework using the UrbanSound8K dataset and
show that, by combining topological features with a classical classi-
fication method, we achieve state-of-the-art results.

Index Terms— alarm detection, signal classification, topologi-
cal signal processing, topological data analysis, persistent homology

1. INTRODUCTION

An alarm sound is “a loud noise or a signal that warns people of
danger or of a problem” (Oxford English Dictionary). The ability
to automatically detect alarms in noisy environments is essential in a
wide range of settings, for example – providing alerts for the hearing
impaired, or detecting ambulance sirens by autonomous cars. This is
a challenging task mainly since the temporal and spectral properties
of alarm signals have a tremendous variability (see Figure ??).

Classical approaches to alarm detection use specific features
in the time and frequency domains to detect alarms with a well-
known waveform, e.g. ambulance siren [?, ?, ?, ?]. More modern
approaches [?, ?, ?] train deep convolutional neural network (CNNs)
to classify various types of urban sounds, where alarm sound is one
of the classes.

Topological data analysis (TDA) promotes the use of qualita-
tive structural information in data and network analysis [?, ?]. The
main tool developed and used in this field is called Persistent Homol-
ogy. Briefly, this tool provides multi-scale information about various
kinds of “holes” that may appear in the data (see Section ??). Per-
sistent homology has been successfully applied in a wide variety of
data analytic problems (e.g., in robotics [?], network analysis [?],
neuroscience [?], and hyperspectral imaging [?]). Most relevant to
us, is its use in signal processing. Here, one first converts a discrete-
time signal into a point cloud using the sliding window transforma-
tion (see Section ??), and then computes persistent homology. The
intuition is that the topological structure of the point cloud may re-
veal useful information about the underlying dynamical system. For
example, in [?, ?] it was shown that persistent homology is able to
detect periodic and quasi-periodic phenomena in signals. This ap-
proach already have found several applications [?, ?, ?, ?].
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Fig. 1: STFT of three alarm sounds (police siren, ambulance, and
alarm clock), demonstrating the variability of the waveforms.

Our goal in this paper is to introduce persistent homology to the
task of alarm sound detection. We will show that topological in-
formation extracted from a signal significantly enhances detection
accuracy, and in fact allows us to achieve state-of-the-art results us-
ing a classical classifier. From the TDA point of view there are two
main novelties here: (a) We use persistent homology for classifying
signals not according to any predefined properties (e.g. periodicity);
(b) We show that homology in degrees higher than 1, which is rarely
used, has in fact a significant contribution to the task at hand. Fi-
nally, we note that signal-classification framework we propose here
is quite generic and can be applied in many other scenarios.

2. PROPOSED METHOD

The main contribution of this paper is the introduction of topologi-
cal methods to the task of alarm sound detection. In this section we
present the key steps in transforming a time series into a list of topo-
logical features. We present it here in general terms, and provide the
application-specific details later. We assume that the input (xn) is a
finite discrete-time signal. The key steps are the following:

1. Convert the time series (xn) into a D-dimensional point
cloud PD = {p1, . . . , pm} ⊂ RD . This is done using the
sliding window transformation. See section ??.

2. Apply a dimension reduction algorithm to transform PD into
a lower-dimensional point cloud Pd ⊂ Rd, with d < D. See
section ??.

3. Use the points in Pd to construct a simplicial filtration F ,
which can be thought of as an increasing collection of hyper-
graphs. See section ??.

4. Compute the persistent homology PHk(F) for the filtration
generated in step 3, and its corresponding persistence diagram
dgmk(F). Here k represents the dimension of the topologi-
cal structures we are interested in. See Section ??.

5. Extract a list of numerical marginals from the computed per-
sistence diagrams, denote by T1, . . . , TN , see Section ??.

The output of the pipeline above is a list T1, . . . , TN of numerical
topological features, representing various measurement related to the
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spatial structure of the original signal (xn) when converted into a
point cloud. Next, we will discuss each of the steps above in detail.

2.1. Sliding window transformation

The purpose of the sliding window (SW) transformation [?] (also
known as ‘time-delay embedding’) is to convert a discrete-time sig-
nal into a point cloud (i.e., a finite collection of points) in a higher
dimensional space. The motivation for doing so is the idea that the
shape of the point cloud may reveal substantial information about
the dynamical system underlying the observed signal. Given a time
series (xn), and two natural numbers D and τ , define

pi = (xi, xi+τ , . . . , xi+(D−1)τ ) ∈ RD.

In other words, pi consists of D samples from the original signal,
with interval τ between samples. Next, we define the point cloud
PD = {pi}i∈I . The index set I controls the size of the point cloud
as well as the amount of overlap between the sampling windows.
Examples of the SW transformation can be seen in Figure ??.

2.2. Dimension reduction

The topological construction we use in the following steps suffers
from both computational and accuracy issues in high dimensions.
Therefore, dimension reduction is a key step in our pipeline. There
are numerous powerful and well-studied methods for performing di-
mension reduction (e.g., PCA, MDS, Isomap), and one has the free-
dom to choose any of them here. We chose to use the Uniform Man-
ifold Approximation and Projection (UMAP) algorithm [?]. Briefly,
UMAP is a manifold-learning algorithm, whose main objective is
to find a low-dimensional graph-representation that preserves the
global (topological) structure of the data. The main reasons for this
choice are that: (a) The assumptions on the structure underlying the
data are quite generic (a Riemannian manifold), supporting the intri-
cate shapes generated by the SW transformation; (b) Preserving the
global structure, implies that when we extract topological informa-
tion from the data we do not lose much information.

2.3. Simplicial filtration

Simplicial complexes. Simplicial complexes are high-dimensional
generalization of graphs, where in addition to vertices and edges we
also include triangles, tetrahedra and higher dimensional faces. Tak-
ing the vertices to be the point cloud Pd (the output of the previous
step), simplicial complexes serve as a discrete approximation (pos-
sibly a triangulation) of the underlying space, from which we can
extract the desired topological information.

Formally, let S be a set, andX be a collection of nonempty finite
subsets of S. We say that X is an abstract simplicial complex if it
satisfies the following property,

A ∈ X , and B ⊂ A =⇒ B ∈ X.

Each elementA ∈ X is called a simplex, whose dimension is |A|−1.
In particular, |A| = 1 is a vertex, |A| = 2 is an edge, etc.
The alpha complex. There are various ways to generate simplicial
complexes from point clouds (e.g., the Čech and Vietoris-Rips com-
plexes [?]), and this is also an algorithm-design choice. Here, we
chose to use the alpha complex, which is constructed as follows.

Let P be a finite point cloud in Rd. For each p ∈ P we define
its Voronoi cell and truncated Voronoi cell as,

V (p) := {x ∈ Rd : ‖x− p‖ ≤
∥∥x− p′∥∥ , ∀p′ ∈ P},

Vr(p) := V (p) ∩Br(p),

Fig. 2: Alpha complex for a 2D point cloud with given radius. The
grey lines are the boundaries of the Voronoi cells V (p), and the
shaded regions are the truncated Voronoi cells Vr(p).

Fig. 3: Homology. All shapes here have a single connected compo-
nent (H0). The ring has a single hole (H1), the sphere has a single
“air pocket” (H2), and the torus has two holes and one air pocket.

where Br(p) is the ball of radius r around p. The alpha complex
Ar(P) is the nerve of the truncated Voronoi cells, i.e.,

{p1, . . . , pk} ∈ Ar(P)⇐⇒
k⋂
i=1

Vr(pi) 6= ∅.

See Figure ?? for an example. Note that when r = ∞ we get that
A∞(P) is the well-known Delaunay triangulation. One important
property of the alpha complex (via the Nerve Lemma [?]), is that
Ar(P) has the same homology as the union of balls

⋃
pBr(p).

2.4. Persistent homology

Persistent homology is the main tool used in TDA which allows us
to extract robust topological information from filtrations of spaces.
In this section we provide a brief and intuitive explanation to what
persistent homology is, and refer the reader to [?, ?] for details.
Homology. Briefly, homology is an algebraic-topological structure
that captures information about the shape of topological spaces
and about mappings between spaces. If X is a topological space
(e.g., a simplicial complex), we attach to it a sequence of vec-
tor spaces (or groups in the more general formulation) denoted
H0(X), H1(X), H2(X), etc. The basis elements of H0(X) cor-
respond to the connected components of X , H1(X) – to loops
surrounding holes in X , H2(X) – to closed surfaces enclosing “air
pockets” in X . Generally, Hk(X) represents information about
“k-dimensional cycles”, which can be thought of as k-dimensional
surfaces that are empty from within. See examples in Figure ??.

In the context of data analysis, the power of the homology func-
tional comes from the fact that it is independent of the coordinate
system chosen, and is robust to continuous deformations. On the
other hand, since the nature of homology is discrete (holes can ei-
ther exist or not), it can be sensitive to noisy observations. One of
the goals of persistent homology is to overcome this sensitivity.
Persistent homology. The goal of persistent homology is to ana-
lyze a filtration (increasing sequence) of spaces rather than a single
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space, and to provide information about the “evolution” of k-cycles
throughout the process. Suppose that we have a filtration F = {Xt}
(i.e., Xs ⊂ Xt for s < t). Considering the homology Hk(Xt), as
t increases, k-cycles (holes) may form at various times, and later fill
in. The k-th persistent homology, PHk(F), tracks this birth-death
process. The information provided by PHk(F) is often summarized
by a persistence diagram, dgmk(F), which is a collection of points
in the plane, where the x-axis represents the birth time of a cycle,
and the y-axis represents its death time. See Figure ?? for examples.

We apply persistent homology to the filtration of alpha com-
plexes generated from the lower-dimensional point cloud Pd. Here,
the time parameter of the filtration is represented by the radius r. In
other words, instead of choosing a fixed radius r and analyzing the
homology of Ar(P), we consider the entire range of radii [0,∞),
and analyze the persistent homology of the filtration {Ar(P)}∞r=0.

2.5. Extracting topological features

The complete pipeline presented in Sections ??-?? is

(xn)
(1)−−→ PD

(2)−−→ Pd
(3)−−→ {Ar(Pd)}

(4)−−→ dgmk({Ar(Pd)}),

where the steps are: (1) SW transformation, (2) UMAP dimension
reduction (can be replaced with other algorithms), (3) alpha complex
filtration (can be replaced with other filtrations), and (4) persistent
homology computation. See examples in Figure ??. In this section
we discuss the numerical values that we extract from the output per-
sistence diagrams, and the motivation for using them.

The connection between temporal signals and their correspond-
ing persistent homology was studied in the past from both theoretical
and applied perspectives. The most intuitive connection is between
periodic signals and PH1, since periodicity in the signal results in
loops formed in the point cloud. This connection was studied rigor-
ously in [?], and has been used in various applications [?, ?, ?, ?].
More recently, it was shown in [?] that quasi-periodic signals gener-
ate ‘torus-like’ point clouds, where the torus dimension depends on
the number of independent frequencies forming the signals. This es-
tablishes a link to PHk for higher values of k (a d-dimensional torus
has cycles in dimension k = 0, . . . , d). In addition to the above re-
sults, while experimenting with alarm sound signals, we discovered
that signals with continuously shifting frequencies (e.g., a chirp, FM
signals), often have distinctive features in PH2 (“air pockets”), see
for example the second row in Figure ??.

Next, we provide formulae for the numerical features extracted
from the persistence diagrams computed for a single time series
(xn). Note that the quantities described next were defined in a
heuristic way. Nevertheless, we will try to provide some intu-
ition behind their definition. Our features make use of the follow-
ing notation. Recall that each diagram dgmk is a collection of
(death,birth) pairs, representing the lifetime of each k-cycle in
PHk. We define Lk = {Lk,1, Lk,2, . . .} to be the collection of life-
time lengths (i.e., death − birth) of all cycles in PHk. We assume
that the list is sorted in a descending order, so that Lk,1 represents
the longest lifetime. The first type of quantities we define aims to
capture the signal properties discussed above. To this end, we define

PS = 1−L1,2

L1,1
, QPS = L1,2 ·L2,1, and FSS =

L2,1 · L2,2

L1,1
.

The Periodicity Score (PS) checks how close the signal is to being
periodic, i.e., having a single dominant 1-cycle. The Quasi Period-
icity Score (QPS) tests for quasi-periodicity. This score is high if
there are at least two significant 1-cycles and a significant 2-cycle,

Fig. 4: From signal to persistence diagrams. Each row presents
a discrete-time signal, its corresponding SW transformation in R3,
and the persistence diagrams dgm1, dgm2. Top row: a quasi-period
signal with two independent periods. The point cloud generated has
the shape of a torus. Indeed, its persistence diagrams have two per-
sistent features (far from the diagonal) in dgm1, and one in dgm2.
Bottom row: a chirp signal. Here the point cloud seems to generate
two air-pockets, manifested by the two persistent features in dgm2.

an indication for a torus-like shape (see Figure ??). The Frequency
Shift Score (FSS) checks for the appearance of a pair of dominant 2-
cycles, which in our study were shown to be indicative of frequency
shifts (Figure ??). The second type of features we extract aims to
provide statistical information about the lifetime distributions of the
cycles. For each k ∈ {0, . . . , 4} we compute the following:

• Top longest lifetimes: Lk,i, i = 1, . . . , 5.

• Number of α-long lifetimes: Nk,α = #(Lk,i > α). The
value ofα is chosen empirically to distinguish between mean-
ingful features and “noise” in the diagram.

• Mean and variance: mk = mean(Lk), σ2
k = var(Lk).

• Normalized longest lifetime: Lk,1/|Lk|, and Lk,1/mk.

In addition, we compute values that measure the interplay between
cycles in different dimensions. For all k1 < k2 ∈ {0, 1, 2} we take
the following:

• Ratio of means: mk1/mk2 .

• Ratio of α-long cycles Nk1,α/Nk2,α.

• Products of top longest lifetimes: Lk1,i · Lk2,i, i = 1, . . . , 6.

• The product: Lk1,i · (Lk2,i − Lk2,i+1), i = 1, . . . , 6.

3. EXPERIMENTAL RESULTS

The dataset we used to demonstrate the power of our framework is
the UrbanSound8K[?]. This dataset contains 8,732 sound excerpts
from 10 different classes, 929 of them are labeled as alarm sounds.
The excerpts are at most 4 seconds long, and the sampling rate is
44,100[Hz]. In order to speed up the topological computations, and
since we observed little if any performance loss, we down-sampled
the signals to 8,820[Hz]. Since alarm sounds form only one class
out of ten in this dataset, we used a bagging method in the training
stage (balanced batches with 32 alarm and non-alarm sounds). The
excerpts were sampled with replacement. The model was trained in-
crementally on the balanced batches, and the procedure was repeated
until every excerpt in the training set was used.
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3.1. Additional implementation details

Classical DSP features. In addition to the novel topological features
presented in Section ??, we also incorporate classical DSP quanti-
ties in our classification task. We use similar features as in [?], where
they were shown to be powerful, specifically in the context of alarm
sound detection: (1) Pitch (using the YIN algorithm [?]); (2) Short
time energy; (3) Zero crossing rate; (4) 13 Mel-frequency cepstral
coefficients; (5) Spectral flux; (6) Spectral roll-off; (7) Spectral cen-
troid; (8) Spectral flatness. For (2)-(8) we used 20[ms] windows,
and took the maximum, minimum, average, median, and standard
deviation over all windows. In addition, as in [?], we computed the
Discrete Wavelet Transform (DWT) with 10 decomposition levels.
We calculated the energy and waveform length for each level, and
took their variance across the levels.

Feature selection. We presented above a long list of features (topo-
logical and DSP) that are potentially useful for our signal classifi-
cation task. In order to decide which features should be used in the
training stage, we use the ReliefF algorithm [?, ?] to assign weights
to each feature, measuring its relative contribution to the classifica-
tion problem at hand. Briefly, this algorithms iteratively ranks fea-
tures used by a binary classifier, according to the difference in values
between data points and their nearest hit (same-class instance) and
nearest miss (different-class instance). The complete feature ranking
is available online (see github link below). We note that among the
15 highest ranked features, 9 are topological features including the
PS and QPS scores, which confirms our intuition that the shape of
the point cloud serves as a significant statistic. In addition, among
the top 20 highest ranked topological features, we note that four are
derived from PH2, and one from PH3, indicating that homology in
degrees higher than 1 also plays a significant role.

Classifier. Current state-of-the-art results for alarm sound detec-
tion, are achieved using powerful machine learning algorithms
(e.g. DNNs). Since our goal here is to focus on new powerful fea-
tures, we intentionally chose to use a classical algorithm, and to
highlight the contribution of the features rather than the algorithm.
We use here the AdaBoost classifier [?] with shallow decision trees,
and with one proprietary modification: As part of its training stage,
the AdaBoost algorithm trains many decision trees separately, and
then combines them together. Since the number of features we are
generating is very large, instead of using all of them to train all the
decision trees, we randomly sample a small subset of features for
each tree. The way we generate this sample is such that the proba-
bility to choose the i-th feature is proportional to ewi , were wi is the
weight of i-th feature as calculated by the ReliefF algorithm. This
way, we guarantee a bias towards the more informative features. The
sample size we used was 4 (from an ensemble of 120 features).

3.2. Results

For each of the sets (train, validation, test), we extracted both the
topological and DSP features as described in Sections ?? and ??, re-
spectively. We applied the ReliefF algorithm to the train set in order
to rank the contribution of all features. In the classifier we used all
NTOP = 80 topological features that obtained a positive ReliefF
weight, and added the top NDSP = 40 DSP features. For the SW
transformation we used D = 70, and for UMAP algorithm we took
d = 4. The choice of the step-size τ for the SW transformation was
made heuristically by searching for the value that maximizes the av-
erage QPS score for the train set. The tuning of all these parameters
was done in using k-fold cross validation. The results are presented
in first row of Table ??(a).

Features Accuracy
TOP & DSP 98.8%

TOP1 & DSP 98.1%
TOP 94.6%
DSP 71.0%

(a)

Method Accuracy
Zhang et al [?] 96.4%
Garg et al [?] 96.7%

Li et al [?] 98.7%
Current work 98.8%

(b)

Table 1: (a) The accuracy results of the combined framework, com-
pared to topological-only and DSP-only features. By TOP1 we refer
to features derived from dgm0 and dgm1 only. (b) Comparing our
results with the most recent state of the art.

To assess the contribution of topological features to the final re-
sults, we ran a small ablation study. We ran the algorithm once with
40 topological features only (no DSP), and once with 40 DSP fea-
tures only. We also included a run with topological features only in
dimensions 0 and 1, to assess the contribution of the higher dimen-
sional features. The results in Table ??(a) highlight the remarkable
performance of the topological features, and also show that topolog-
ical features in dimensions 2− 4 have notable contribution.

Reported accuracy results in previous work [?, ?, ?, ?, ?, ?, ?]
(albeit, for different datasets) range between 85%-98.49%, so the ac-
curacy we achieved by including topological features is higher. With
respect to the UrbanSound8K dataset, we present the state of the art
results in Table ??(b). Note that the results reported in [?, ?, ?] are
for the full classification problem (with 10 classes). Therefore, in
order to compare to our setting (binary classification), we computed
the marginal accuracy of their results, with respect to alarm sounds
vs. other classes. He as well, our results have the highest accuracy.
We note that all other methods presented in table ??(b) are based on
deep CNNs. Intuitively, the higher accuracy of our classifier stems
from the use of global topological features, which are relatively ro-
bust to small perturbations, and make it less susceptible to low SNR.

4. CONCLUSION

We presented a new approach to alarm sound detection using novel
topological features, providing state-of-the-art results, while using a
relatively simple classifier. The framework we develop here is quite
generic and can be applied in other signal classification problems,
with minor adjustments. With respect to the UrbanSound8K dataset,
it would be interesting to test the capabilities of the topological
framework in the full classification problem (i.e., all 10 classes).
One important direction of future research is to better understand
the topological features that were found to be the most prominent,
and to use this knowledge to devise a systematic way of extracting
features from persistence diagrams. This should hopefully lead to
using the framework we propose here in many other settings.
Code is available at https://github.com/tofi98/alarms.
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[31] J. Schröder, S. Goetze, V. Grützmacher, and J. Anemüller, “Au-
tomatic acoustic siren detection in traffic noise by part-based
models,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2013, pp. 493–497.

215

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 06,2022 at 06:10:33 UTC from IEEE Xplore.  Restrictions apply. 


