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Abstract—An Intelligent Reflecting Surface (IRS) is an emerg-
ing technology for improving the data rate over wireless channels
by controlling the underlying channel. In this paper, we describe
a novel solution for IRS configuration to maximize the data rate
over wideband channels. The optimization is obtained by online
training of a deep generative neural network. Inspired by related
works in image processing, this network is randomly initialized
and acts as a regularization term for the optimization process
since the structure of the generator is sufficient to capture a
great deal of IRS statistics prior to any learning. In contrast
to recent deep learning techniques for IRS configuration, the
proposed technique does not require an offline training stage and
can adapt quickly to any environment. Compared to the previous
state-of-the-art algorithm, the proposed method is significantly
faster and obtains IRS configurations that achieve higher data
transmission rates.

Index Terms—Intelligent reflecting surface (IRS), Reconfig-
urable Intelligent Surface (RIS), passive beamforming, OFDM,
deep neural prior.

I. INTRODUCTION

An Intelligent Reflecting Surface (IRS) [1] is a two-
dimensional surface of metamaterial whose interaction with
electromagnetic waves can be controlled. It consists of an
array of NH × NW = N discrete passive elements of sub-
wavelength size with reflection coefficients having config-
urable amplitude and/or phase responses, where NH and NW
are the number of elements in each IRS column and row,
respectively. By tuning these elements, the flat surface can
mimic the reflection properties of a differently shaped object,
thereby allowing the array to intelligently reconfigure how an
incident wave is reflected [2], [3].

Each IRS element can only have a single configuration,
although the channel changes its properties over the frequency
domain. Most prior works on IRS configuration optimiza-
tion assume narrowband communication systems [4], which
circumvents this issue by limiting the bandwidth. However,
the obtained solutions are not useful in modern commu-
nication systems operating over wideband channels. It is
therefore essential to develop algorithms that provide good
IRS configurations for wideband channels, particularly using
orthogonal frequency-division multiplexing (OFDM) [5]–[8].
The physical implementation of such a system encounters

Fig. 1: IRS-assisted wireless communications, where the base
station has NLOS to the receiver, but it does have LOS to the
IRS, which is configured to improve data transmission rate.

many challenges, such as limited pilot signaling, hardware
impairments, low signal-to-noise ratio (SNR), and unknown
fading conditions. Therefore, it is important to design a generic
algorithmic solution for utilizing IRS technology that is based
on minimal prior knowledge of the properties of the specific
IRS, and employs as few stages as possible [9], [10]. The
goal of this paper is to characterize the behavior of an IRS
based on the received signals from over-the-air signaling, i.e.,
develop an efficient control algorithm to configure the surface
to increase communication performance [11].

II. SYSTEM MODEL

We consider the practical setup where the IRS is deployed
to have a line-of-sight (LOS) channel to the base station [5].
However, the IRS may or may not have LOS to the user’s
receiver equipment, as illustrated in Fig. 1. We further assume
that all users have non-LOS (NLOS) channels to the base
station, since this is the setup where the IRS can make the
largest difference in the link budget. Users who have LOS to
the IRS will be referred to as LOS users, while those who
have NLOS to the IRS will be referred to as NLOS users.
The transmitting base station and receiving user have a single
antenna each.
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We will adopt the system modeling from [2]. More pre-
cisely, the relation in the discrete-time domain between the
transmitted signal x[k] and the received signal z[k] is modeled
as [2]

z[k] =

M−1∑
`=0

hθ[`]x[k − `] + w[k] (1)

where k is the time index and {hθ[`] : ` = 0, . . . ,M − 1} is
the finite impulse response (FIR) representation of the channel
from the base station to the receiver with M taps. Moreover,
θ ∈ CN×1 with unit-modulus entries representing the IRS
configuration and w[k] is the receiver noise. The transmission
over the communication channel will be carried out using
OFDM with K subcarriers, where K > M . We can write
(1) in the frequency domain as

zf = hfθ � x
f +wf (2)

hfθ = hfd + V
fθ, (3)

where xf , zf , hfd and wf are vectors of size K × 1
representing the frequency-domain transmitted signal, received
signal, direct channel and noise, respectively, and � denotes
the Hadamard element-wise product. The standard mapping
from the time to frequency domain is omitted for brevity,
but can be found in [2]. The matrix V f is a K × N matrix
representing the cascade of the channel from the transmitter
to the IRS and the channel from the IRS to the receiver, and θ
is a vector of size N × 1 representing the configuration of the
IRS. Based on this model, the data rate is computed by [2]:

R =
B

K +M − 1

K−1∑
ν=0

log2

1 +
P
∣∣∣hfθ [v]∣∣∣2
BN0

 (4)

where P is the transmit power, B is the bandwidth, N0 is
the noise power spectral density, and hfθ[ν] is an entry of hfθ
for ν = 0, . . . ,K − 1. It represents each of the subcarrier
channels from the base station to the receiver via the IRS
for configuration θ. This rate expression is a summation over
the K subcarriers, which is then divided by K +M − 1 to
compensate for the cyclic prefix loss.

A. Channel Estimation

The data rate in (4) depends on the IRS configuration θ.
Acquiring channel state information (CSI) is key to selecting
an appropriate configuration that is somehow matched to hfd
and V f in (3). Since the IRS is a passive device, in the sense
that the N elements are not equipped with any active radio
frequency (RF) chains, the channel estimation must be carried
out at the base station or user, based on received pilot signals.
Hence, it is hard (if not impossible) to separately estimate the
channel from the base station to the IRS and from the IRS to
the receiver. However, the cascaded channel V f from the base
station through the IRS and to the receiver can be estimated
using pilot signals sent from the base station to the receiver.

The acquisition of accurate CSI is essential to achieve
high-performance gains in IRS-aided wireless systems. Many
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Fig. 2: Verification of our channel estimator. Although using
only N configurations, it follows closely the amplitude and
phase of the true received signal.

previous IRS configuration algorithms ignore the channel esti-
mation problem and consider the achievable performance gains
assuming perfect CSI for all channels considered [3]. Other
works employ rudimentary least squares (LS) estimators [12].
Recent works employ more advanced channel estimation
methods, such as IRS element grouping or exploitation of
the common channel between the IRS and base station in
a multi-user scenario [3]. In practice, assuming perfect CSI
is unrealistic. Therefore, in this paper, we employ our novel
LS channel estimation method which is described in detail
in [12]. Briefly, we use only N constant pilot signals x[k] ≡ α
transmitted with N different IRS configurations θ1, . . . ,θN
that form the columns of the N ×N Hadamard matrix. It is
possible to estimate the channel using less than N + 1 pilot
signals by utilizing information about the physical shape of
the IRS. An example of channel estimation using this method
is shown in Fig. 2.

B. IRS Configuration Selection

The selected IRS configuration θ affects all subcarriers
because the transmissions are simultaneous. In the narrow-
band case, we can optimize the IRS in closed form for a
single subcarrier, but in the wideband case, we must find
a nontrivial tradeoff between all K subcarriers. The recent
literature contains heuristic solutions based on successive
convex approximations [6], semidefinite relaxation [7], and
strongest tap maximization (STM) in the time domain [8].

Deep neural networks have shown remarkable results in
many areas, such as signal and image processing and natural
language processing, where it is usually difficult to formulate
a mathematical model for feature representation. Similar tools
have been recently proposed for wireless communications,
where traditional approaches heavily rely on theory based on
too simplified models. Deep learning methods for key IRS
applications such as signal detection, channel estimation, and
beamforming are reviewed in [9], [10]. Most of these methods



do not perform end-to-end learning, are environment-specific,
and consume a significant amount of computational resources.
In contrast, our proposed technique, as it is not pre-trained
offline, can adapt to any environment. It converges quickly
and therefore consumes relatively modest resources.

Our configuration optimization algorithm is based on the
pioneering work of Deep Image Prior [13] that introduced the
use of a neural prior in the context of image reconstruction,
as well as on following works that extended the neural prior to
other problems and representations. We observe that arbitrary
IRS phase changes tend to reduce the data transmission rates,
whereas configurations subject to a neural prior tend to per-
form better. This observation is supported by [5], [14], which
claim that the IRS configuration should contain strong self-
similarity due to spatial correlation. Moreover, it was shown
in [15] that the over-parameterization, which is inherently
available in neural networks, helps in avoiding local minima
in optimization schemes. The design of our algorithm is
inspired by these previous works, exploiting the neural prior
and the over-parameterization that networks provide to find a
configuration that maximizes the rate.

III. DEEP NEURAL PRIOR

Deep convolution neural networks (CNNs) have been suc-
cessfully used to learn features and mappings from large
amounts of data, including priors about the data. Surprising
recent work, Deep Image Prior [13], uses untrained CNNs to
solve inverse problems like image restoration. In this scheme,
a CNN generator is initialized with random weights. These
weights are then optimized to make the network produce an
output that is as close to the target image as possible. This
procedure uses no prior information from other images as the
structure of the generator network architecture captures a great
deal of image statistics and is sufficient to impose a strong
prior to restore the original image from the degraded image.
The motivation behind using CNNs is that they share the
same kernel/filter across the entire input image. This inductive
bias encourages solutions that are highly preferable for image
reconstruction, i.e., smooth, contain self-similarity, and lack
noisy artifacts. The reconstruction error initially decreases
and then plateaus as the network fits natural-looking images.
Training should be stopped at this point before the error
decreases further as the network starts fitting the noise.

Generators used for Deep Neural Prior are typically over-
parameterized, i.e., the number of network weights is much
larger than the output dimension. Choosing a neural network
as the parametric model over-parameterizes the problem as
typical neural networks have more parameters than required
to reconstruct the target. This over-parameterization has been
shown to be powerful at avoiding local minima [15] as well as
crucial to allow smoother and Lipschitz limited solutions [16],
[17].

In contrast to direct optimization techniques that usually
perform some type of gradient-descent optimization on the
model parameters directly, network-based optimization tech-
niques try to minimize the objective by optimizing network

weights. Although a theoretical explanation has yet to be pro-
posed, and with only initial mathematical interpretations, deep
neural networks have been empirically shown to be helpful in
solving various optimization problems and to reaching better
solutions than state-of-the-art direct optimization algorithms.
The idea of [13] has been extended to other fields, such
as consolidation of point clouds [18], reconstruction of 3D
meshes [19], and various audio applications [20]. Furthermore,
deep neural networks have been shown to be successful
at improving optimization processes in general, leading to
better solutions than direct optimization [21], [22]. Therefore,
assuming the solution lies on the manifold spanned by neural
networks and employing a deep neural prior:

1) encourages a regularized result;
2) exploits the over-parameterization provided by neural

networks to find a better local optimum.
Previous works [5], [14] claim that a favorable solution

to the IRS configuration problem should contain strong self-
similarity since the channel is spatially correlated over the
IRS surface, supporting the use of a deep neural prior for
IRS configuration search. Moreover, it was shown [15] that
over-parameterization, which is inherently available in neural
networks, helps to avoid local minima during the optimization
process and reach a better final solution, even for simple
problems such as linear kernel estimation. Consequently, we
hypothesize that a deep neural prior may also be favorable
for solving the IRS configuration problem as it is subject
to a neural network that produces self-similar results and is
able to avoid local optimization minima better than direct
optimization.

We define our loss function as minus the data rate and
optimize a network to overfit a phase configuration for a single
specific user, so our optimization problem is defined as

minimize
θ

(−R) s.t. |θ| = 1, (5)

where R is defined in (4) and |θ| = 1 means that every
entry should have a unit magnitude. This is a non-convex
optimization problem because of its constraint. Therefore, con-
vex optimization algorithms cannot be used to reach a global
minimum and indeed, gradient-descent based algorithms have
shown inferior results when compared to known heuristic
solutions and also compared to our solution.

IV. NETWORK ARCHITECTURE

Since the users are mainly distributed in the azimuth plane,
we have observed that LOS users achieve high data rates with
very smooth, column-like, configurations. We conclude that
the configuration’s azimuth components are highly important,
especially for LOS users. Therefore, we designed a network
architecture that accounts for the azimuth and elevation com-
ponents separately and learns how to combine them in order
to maximize the data rate. The separation into two branches
facilitates the training of the network and allows it to converge
faster. As depicted in Fig. 3, our network architecture consists
of two branches with identical architecture: the top branch
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Fig. 3: The proposed network consists of two branches: the top branch generates the elevation component, and the bottom
branch generates the azimuth component. The outputs of these two branches are combined to generate an IRS configuration
matrix.

generates the elevation component and the bottom branch
generates the azimuth component. The outputs of the two
branches are used together to generate a final IRS configura-
tion matrix. Each branch consists of five fully connected layers
interspersed by one hyperbolic tangent activation function, and
a final hyperbolic tangent activation layer. For optimization
purposes, using multiple consecutive fully-connected layers
is not equivalent to having a single larger fully-connected
layer, as shown in [15]. In fact, this creates the desired over-
parameterization by decomposing a single linear layer into
equivalent multiple linear layers, which helps in avoiding local
minima throughout the optimization.

The fully connected layers in the top branch are of size
NH ×1. The resulting vector of this branch is of size NH ×1
and represents the columns of an azimuth configuration. It is
replicated to form a NH × NW matrix. Similarly, the fully
connected layers in the bottom branch are of size NW × 1.
The resulting vector of this branch is of size NW × 1 and
represents the rows of an elevation configuration. It is also
replicated to form a NH ×NW matrix. The outputs of the top
and bottom branches are fed as separate input features into
a convolutional layer that outputs a final IRS configuration
matrix. An example of this combination process is depicted in
Fig. 4. For optimizing the network, we used gradient descent
with cosine annealing learning.

V. RESULTS

We compare the performance of the proposed algorithm to
the baseline case with no IRS, random IRS configurations, a
gradient descent optimizer, and STM [8]. We use the Signal
Processing Cup 2021 simulator [11] to create our validation
and test sets. In the IRS simulator, we set the carrier frequency
to fc = 4 GHz, the bandwidth to B = 10 MHz, and the
number of sub-carriers to K = 500. In our simulations, we
assume the IRS is square-shaped, i.e., NH = NW . Each
element size is 0.4λ × 0.4λ where λ is the wavelength. To
simulate typical physical conditions, we place the base station
at a height of 25m, away from the IRS and receivers, the IRS

(a) (b) (c)

Fig. 4: Network outputs. A lighter color represents a higher
phase value. (a) The output of the top branch is the elevation
component, and (b) the output of the bottom branch is the
azimuth component. They are combined (c) to form an IRS
configuration matrix that tends to have a strong bias towards
the azimuth component.

TABLE I: Average data rate obtained for 51 LOS and 51
NLOS users in an equal distance of 15 m from the center of
the IRS.

Algorithm LOS [Mbit/s] NLOS [Mbit/s]
No IRS 3.48 3.49

Random phase 3.44 3.50
STM 111.16 69.45

Proposed 115.87 70.98

at a height of 10m, and the users at varying heights ranging
from 0 to 20m, such that the base station, the IRS and the users
are not co-planar. A quantitative comparison of the average
data rate obtained for 51 users under the conditions described
above is given in Table I. The data rate obtained using the
proposed method is the highest, both for LOS users and for
NLOS users. It should be noted that the small difference in
values between LOS and NLOS in the first two rows of the
table is due to randomness and is not statistically significant.

Fig. 5 depicts a typical configuration obtained by the
proposed method and a typical configuration obtained by STM.
The phases obtained by the proposed method are spatially
smoother since the neural prior and the network architecture
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Fig. 5: Typical configurations obtained for one NLOS user
with IRS of size 64 × 64. A lighter color represents higher
phase values.

10
1

10
2

10
3

Number of elements

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1 No IRS NLOS

No IRS LOS

Random phase NLOS

Random phase LOS

STM NLOS

STM LOS

Proposed NLOS

Proposed LOS

Fig. 6: Mean data rate for LOS and NLOS users as a function
of the IRS size. The rate is averaged over 51 different users
in equal distance from the center of the IRS.

encourage configurations with this property. Fig. 6 depicts
the data rate as a function of the IRS size. As expected,
using a well-configured IRS allows for higher data rates that
also increase rapidly with the number of IRS elements. The
proposed method achieves higher data rates compared to STM
across all IRS sizes.

One of the notable features of our network is its ability to
converge quickly. The number of optimization epochs until
the network converges increases with the IRS size since the
network size is 5NH+5NW+9 ∝

√
N . We define the network

convergence time as the number of epochs required to reach
95% of the rate obtained after 105 epochs. Fig. 7 shows the
number of epochs required by the network to converge as a
function of IRS size.

Another important advantage of our solution is its robust-
ness to continuous changes in the channels. Such changes
can occur as a result of a user moving around in the room,
causing changes in the direct and controllable channels. Fig. 8
shows the number of epochs required by a pre-trained network
to re-converge after a change in the channels caused by a
shift in the receiver location. We simulated a user moving
smoothly through the room with changing (x, y) coordinates
but a constant z coordinate. We then measured the number of
epochs required for the network to re-converge as a function
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Fig. 7: Number of epochs required by the network to converge
with a learning rate lr = 10−2

N as a function of IRS size.
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Fig. 8: Number of epochs required by a pre-trained network to
re-converge to 99% of the new maximal data rate as a function
of the user’s distance from his/her original location with IRS
of size 64 × 64. The result shown is an average for 10 users
who start walking from different randomly selected starting
points and walk in a straight line.

of the user’s distance from his/her original location. The initial
number of epochs was about 105, while the number of epochs
required to re-converge was significantly lower. These results
imply that the proposed network fits the system parameters
rather than a specific channel or user. We also examined the
influence of having a limited number of retraining epochs on
the transmission rate of a user in motion. We measured the
user’s data transmission rate, and then we simulated his/her
movement in a room. Fig. 9 shows the user’s transmission
rate after a limited number of retraining epochs as a fraction
of the rate at the origin location. The results are compared to
the case where the IRS retains the same configuration as in
the original location.

As mentioned before, the STM method serves as a baseline
for our comparisons. Therefore, it is important to compare the
the two algorithms not only in terms of the obtained trans-
mission rate, but also in terms of their run times. Complexity
metrics are not commonly used in deep learning since they
are implementation specific. Instead, we measured the average
run time of both methods on 51 users, 25 of whom were
LOS and 26 of whom were NLOS. Both methods, STM and
the proposed, were tested on a computer equipped with an
Intel Core i7 CPU and NVIDIA RTX A5000 GPU, with our
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implementation exploiting the GPU’s parallel capabilities. The
run times are depicted in Fig. 10. As shown in the figure, the
proposed method is significantly faster, especially when the
IRS contains a large number of elements.

VI. CONCLUSIONS

We have addressed the IRS configuration optimization
problem for wideband channels using a novel deep neural
prior approach. We showed that the recently proposed ideas
of neural prior and over-parametrization in generative neural
networks can be applied to the world of wireless communi-
cations, far from their original use in computer vision. This
approach, compared to the previous state-of-the-art algorithm,
is significantly faster, and allows us to better utilize IRS
technology to achieve higher data transmission rates between
the base station and users. The code of our solution is available
at https://github.com/tofi98/DeepIRS
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