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Abstract—Automatic monitoring of beach video streams is
important for improving safety, environmental monitoring, re-
search, and education related to beach activities. This paper
introduces a novel approach for monitoring water bodies by
analyzing beach video streams. In contrast to earlier works,
in the proposed approach we analyze not only the behavior
of water bodies, or of humans on beach videos, but also the
interactions between them. By integrating human activity and
water behavior analysis, the approach provides new insights that
are unattainable by analyzing each separately. To accomplish
this objective, deep neural networks are utilized to analyze video
streams from existing beach webcams. The analysis includes the
detection and tracking of people and waves, as well as higher level
analysis. We use the task of characterizing surfing conditions as
a case study and demonstrate our ability to estimate the values
of key parameters that can help determine the quality of a surf
spot at a given time.

Index Terms—beach webcams, people tracking, surfing video
analysis, video monitoring, wave tracking

I. INTRODUCTION

Water bodies, such as lakes, seas, and oceans, play a
vital role ecologically, economically, and socially. For that
reason, humans constantly interact with them. However, water
bodies are a rapidly changing, unpredictable, and sometimes
dangerous environments. One way for utilizing human use of
water bodies while reducing the risks involved in human-water
interactions is to develop technological tools for analyzing and
predicting water body behavior. Such tools are important for
maintaining human safety since they may identify potential
hazards such as large waves, rip currents or submerged objects.
Safety officials may use this information to warn swimmers or
close sections of the beach. Such tools may also be used to spot
distressed swimmers or monitor beach crowd size and behavior
in order to identify potential safety risks such as overcrowding
or rowdy behavior, which could lead to accidents or injuries.
Automatic monitoring of beach video streams can also provide
real-time observations of the beach environment, including
water quality, weather conditions, and the behavior of wildlife
and beachgoers, such as swimmers and surfers. This paper
presents a novel approach for monitoring water bodies. Our
solution utilizes existing beach webcams and applies computer
vision algorithms based on deep neural networks to analyze
the behavior of water bodies, humans, and the interactions
between them.

Our approach for analyzing “beach scenes” combines the
detection and tracking of people in a coastal environment

with the analysis and tracking of waves. The first task of
detecting and tracking people in a coastal environment was
approached by researchers initially using classical image pro-
cessing methods for object detection and tracking [1]. Recent
studies on this task have employed deep neural networks for
object detection [2]. For example, surfers were detected in
videos obtained from beach webcams in [3] using saliency
maps and probabilistic methods, and in [4] using Faster R-
CNN, R-FCN and SSD deep neural networks. The second task
of wave detection, tracking, and analysis is more difficult. Prior
studies on this task have used videos from different sources
for a variety of purposes, ranging from the general study of
wave breaking dynamics [5]–[7] or coastal monitoring [8]
for analyzing surfing conditions [9], [10]. This task, like the
task of people detection, was first approached using classical
image processing methods [5], [9], and later with deep neural
networks [6]–[8], [10].

Beach webcams are typically used to provide live streaming
video of the beach and surrounding area to give people a sense
of the current conditions at the beach, such as the weather and
the waves. Using deep neural networks for detection, and a
tracking algorithm, we track both people and waves in videos
acquired using existing beach webcams. Compared to previous
work that only focused on one of these tasks, tracking both
people and waves allows us to gain a better understanding of
the ”beach scene”. We use the task of characterizing surfing
conditions as a case study. To the best of our knowledge, this
is the first work to detect, track, and analyze people and waves,
and derive insights from analyzing them simultaneously. The
proposed algorithm can distinguish between people in various
poses and draw conclusions from this information. In our case
study, we distinguish between a ”waiting surfer,” who sits or
lies on his surfboard waiting for a wave, and a ”riding surfer,”
who stands on his surfboard during a wave ride. These two
unique abilities, tracking waves and people simultaneously,
and distinguishing between a ”waiting surfer” and a ”riding
surfer,” allow us to match a surfer with the wave he is riding.
By doing so, we are able to gain unique insights about surfing
conditions, using information such as the ratio of waves ridden
to waves unridden, or the ratio of wave height to surfer height.

II. PROPOSED SOLUTION

Fig 1 depicts a block diagram of our proposed solution
for the surfing condition analysis task. For detection and

https://sipl.eelabs.technion.ac.il


Fig. 1: Block diagram of our case study solution for surfing condition analysis.

classification, we use the Faster R-CNN [11] object detec-
tor with the ResNet [12] architecture as the backbone. The
network outputs are bounding boxes of the detected objects
as well as a label for each object. Faster R-CNN is a popular
object detector that has shown impressive results in various
computer vision tasks. It consists of two stages: a region
proposal network (RPN) and a region-based convolutional
neural network (R-CNN). The RPN is a fully convolutional
network that generates a set of object proposals, which are
regions of the image that potentially contain objects, while
the R-CNN classifies and refines these proposals into actual
object detections. One of the key advantages of Faster R-CNN
over other object detectors is its accuracy. Additionally, it is
fast and can process videos in real-time. With the use of the
RPN, Faster R-CNN can efficiently generate a large number
of object proposals, reducing the need for an exhaustive search
over the entire image. The use of shared convolutional features
between the RPN and R-CNN further reduces computation
time and memory usage, resulting in faster and more efficient
object detection.

We used a Faster R-CNN network pre-trained on the
COCO [13] dataset and fine-tuned it by transfer learning
with our dataset of surfing videos. Transfer learning is a
popular deep learning technique that involves using a pre-
trained model on a large dataset and fine-tuning it on a smaller
dataset for a new task. This approach is particularly helpful
when the dataset available for a given task is small, as is often
the case in many computer vision applications, including ours.
Through fine-tuning, where the pre-trained model is adjusted
to suit the new task, a high accuracy can be attained with
less training data and computational resources. The dataset
we created for training contains 600 labeled frames from two
beach webcams. It has, in total, 111 sitting surfers, 39 standing
surfers and 36 waves.

For tracking we use SORT (Simple Online and Realtime
Tracking) [14], a popular fast multi-object tracking algorithm.
The algorithm consists of two main steps: detection and
tracking. The detection step involves using an object detection
algorithm, such as Faster R-CNN, to identify the objects
of interest in the video frames. The tracking step involves
assigning IDs to the detected objects and tracking them across

frames to maintain their identity. SORT uses a Kalman filter
to predict the position and velocity of each object in the video
frames. The Kalman filter estimates the object’s state (posi-
tion, velocity, acceleration, etc.) based on the previous state
and current measurement. SORT also employs the Hungarian
algorithm to assign the detected objects to existing tracks. The
Hungarian algorithm solves the data association problem by
minimizing the cost of matching detections to existing tracks.

SORT is highly configurable, allowing fine-tuning of its
hyperparameters to optimize performance. These hyperparam-
eters include:

• min hits: The minimum number of matching detections
required to start a new track. Higher min hits values make
the tracker more selective, which can help eliminate false
positives.

• iou threshold: The minimum intersection-over-union
(IoU) value required between a new detection and an
existing track for them to be considered a match. Lower
iou threshold values make the tracker more permissive,
which can help reduce the number of unmatched detec-
tions.

• max age: The maximum number of frames a track can
exist before terminating without a matching detection
being found. Higher max age values make tracking more
persistent, which can help prevent track termination due
to a temporary lack of detections, occlusions, or other
disturbances.

In surfing scenarios, attaining continuous detection and track-
ing is challenging due to the water dynamics. However, surfers
and waves in such scenarios are relatively sparse and often
do not occlude each other. Therefore, we fine-tuned SORT
hyperparameters accordingly. We increased the default values
of min hits and max age, while decreasing the default value
of iou threshold. We also introduced a new hyperparameter
that allows us to smooth out tracking even further as post-
processing. Since we trained the neural network on a small
dataset, detection is not always continuous, so the tracked
wave or surfer is not detected in all video frames. As the
appearance of surfers and waves in beach scenes is relatively
sparse, matching an existing track with a new detection is
possible even if there is no strict overlap between them. The



new hyperparameter allows to enlarge the detection bounding
boxes for each trajectory.

After the stage of analysis and matching of surfers and
waves, the algorithm provides the following outputs:

• Number of waves ridden by surfers. Provides an estimate
of the quality of the waves in terms of their suitability
for surfing. The higher the number of ridden waves, the
better are the surfing conditions.

• Number of waves unridden by surfers. This output is also
relevant for estimating the quality of waves, especially
compared to the number of waves ridden during the
same period of time. A high number of unridden waves,
compared to the number of ridden waves, may indicate
poor wave quality due to factors such as low height, poor
shape, or excessive ”chop.”

• Number of surfers: An estimate of the popularity of the
surf spot. Can also be used to determine the surf spot’s
peak hours and how crowded it gets.

• Average ratio between the surfer height and the height
of the wave he is riding. Useful for determining wave
heights and can provide insights into the typical surfing
classifications of wave heights, such as ”knee-high,”
”shoulder-high,” ”overhead,” or ”double overhead,” com-
monly used by surfers.

• Maximum ratio between the surfer height and the height
of the wave he is riding. Can be used to determine the
maximum surfable wave height for the surf spot.

• Average wave velocity. Provides information about the
power and energy of the waves. The higher the wave
velocity, the greater the energy of the waves, which can
make for better surfing conditions.

• Average surfer velocity. Can be used to assess the skill
level of the surfers. Experienced surfers tend to move
faster and make more turns, whereas novice surfers move
slower and with less control.

III. RESULTS

Results were obtained from videos of beach scenes acquired
from webcams not in the training set. Figure 2 depicts sample
detection and tracking results for four beach scenes with
diverse settings.

Table I presents analysis results for the four beach scenes
from Fig. 2. This type of data can help surfers understand
and compare the surfing conditions at multiple surf spots.
For example, the Ericeira Beach appears to be an attractive
surf spot as it has a relatively large number of surfers and a
high ratio of ridden to unridden waves. On the other hand,
the Rockaway Beach appears to be much less appealing for
surfing as it has a relatively small number of surfers, and since
no surfers riding waves were detected (therefore some of the
data in the table for this beach are not available).

To quantify the accuracy of the outputs of the proposed
algorithm, we manually annotated the same beach scenes but
at different times than those at Table I. We present our ground
truth annotations and the corresponding algorithm outputs in
Table II. As can be seen in the table, the algorithm tends

TABLE I: Sample analysis results for the four beach scenes
from Fig. 2. Surfer and wave speed is given in km/h. Average
and maximum wave height is given relative to the height of
the surfer riding the wave.

surfers waves

surf spot # spd ridden unrid avg ht max ht spd

Ericeira 35 17 9 2 1.4 1.6 15

Backdoor 30 25 8 4 2.4 3.5 22

El Porto 10 18 5 4 1.3 2.0 17

Rockaway 6 N/A 0 9 N/A N/A 20

TABLE II: Proposed algorithm outputs vs. ground truth values
for the number of waves ridden and the number of waves
unridden by surfers. The values are for the same beach scenes
at Table I but at different times.

ground truth algorithm outputs

surf spot ridden unridden ridden unridden

Ericeira 9 3 17 3

Backdoor 12 0 13 3

El Porto 4 3 5 4

Rockaway 3 6 0 9

to overestimate wave detections. However, the results of the
algorithm still allow a correct comparison between the quality
of different surf spots.

The reason behind the algorithm’s overestimation of the
number of ridden waves can be attributed to the tracker
creating new tracks for the same surfer during a single wave
ride, which results in counting a single ride as several. This
issue can be mitigated by improving the detection accuracy
through the use of a larger training dataset, and by switching
to a more advanced tracker. Similarly, the algorithm’s overes-
timation of the number of unridden waves can be attributed
to its tendency to mistakenly recognize different ”pockets” of
a single wave as separate waves. This issue can be mitigated
by employing a more aggressive post-processing method that
eliminates short tracks of temporal ”pockets” of the same
wave. Rockaway Beach has different settings from the beach
scenes in the training set. Despite this, the algorithm detected
sitting surfers and waves on this beach with high accuracy.
However, it encountered difficulty in detecting surfers riding
waves, leading to all waves being classified as unridden. This
issue can also be resolved by using a larger training dataset.

IV. CONCLUSIONS

This paper presents a novel approach for automatic mon-
itoring of beach video streams using deep neural networks
to analyze human activity and water behavior simultaneously.
By integrating these two types of analysis, our approach
provides new insights that were previously unattainable when
analyzing each separately. Specifically, we demonstrated our
approach by characterizing surfing conditions as a case study
and showed that it can estimate key parameters that determine
the quality of a surf spot, such as wave count and the ratio



(a) (b)
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Fig. 2: Examples of detection (a) and tracking (b)-(d) in surfing scenes from (a) Ericeira, Portugal in October 2021 (b) Backdoor
Reef Brake, Oahu, Hawaii in December 2021 (c) El Porto beach, California in January 2021 (d) Rockaway Beach, New York
in October 2019. A yellow bounding box indicates a wave ”pocket”, a red bounding box indicates a ”waiting surfer”, and a
green bounding box indicates a ”riding surfer”. A green trails indicates the track of a riding surfer in the last frames.

of ridden to unridden waves. Our approach has the potential
to improve safety, environmental monitoring, research, and
education related to beach activities using existing webcams
already installed at many beaches.
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