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Abstract— A key in Dolphin’s conservation efforts is pop-
ulation estimation in their natural environment. A common
method for mapping Dolphin’s appearance is the detection of
their vocalizations. In this paper, we propose a novel detection
technique for Dolphin’s whistles, referred to as ECV (Entropy,
Correlation, and Viterbi algorithm). ECV is a robust detector
of low complexity that automatically detects dolphin’s whistles
and extracts their spectral features, using a single receiver
with only a few system parameters. The method employs a
chain of decisions based on spectral entropy and time-domain
correlation followed by constrained Viterbi algorithm to extract
the whistles’ features. Simulation results as well as performance
over real recordings shows a good trade off between detection
and false alarm, that compares well with the widely used
PAMguard system.

I. INTRODUCTION

Conservation of top predators in an ecosystem is crucial
for the existence of the entire food chain. Among the most
interesting marine top predators are dolphins, a species
whose diversity reflects on the health of the entire marine
environment [1, 2]. Off Israel’s coast, invasive species and
human interaction (e.g. fishing activities and construction and
operating gas rigs) pose threats on the strive of dolphins, and
raise concerns among conservationists.
A common way to estimate the impact of such threats on
dolphins’ populations is to find indication of their existence
or non-existence across large surveyed areas, mostly by
detecting Dolphin’s localizations. To that end, man-in-the-
loop methods (e.g., [3]) may be inefficient, and the challenge
is to develop automatic detection with high precision. In
particular, such a tool will be useful to map the geographical
distribution of dolphins, their daily routine, etc. In this work,
we focus on the automatic detection of Dolphins’ whistles.
The common methods for detection of dolphins’ whistles in-
clude software solutions like PAMGuard [4], which performs
detection by frequency domain amplitude, and methods
based on the analysis of time-frequency spectrum images
[5]. However, these methods require expert supervision to
manually adapt detection thresholds, and may not fit the case
of long term data analysis.

Tracking the population of dolphins using their acoustic
emissions requires to overcome three main challenges:
detection within strong ambient and man-made noise,

feature extraction, and classification. Erbs et al [6] used an
array of towed hydrophones in order to record four types of
dolphins, and PAMguard in order to detect and classify their
whistles. PAMguard whistle detection is highly configurable,
it mostly relies on the following modules, Energy sum
detection , Spectrogram correlation and a Matched filter
detector configured to the types of whistles expected. Mahdi
Esfahanian et al [7] compared two methods to classify and
detect different types of whistles produced by Bottlenose
dolphins. The first relies on Fourier Descriptors and second
on temporal and spectral features of the whistles. Features
of whistle spectral contour lines proved to be effective
for whistle classification. In their paper, suction-cup
hydrophones were used to record underwater acoustics
such that high SNR values are obtained. The features
were analyzed using support vector machine (SVM) and
K-nearest neighbors (KNN) classifiers. Oswald et al [3]
classified nine different species using a similar methodology
of manually detecting whistles and extracting their spectral
information. They found that the most effective spectral
parameters are: minimum frequency, maximum frequency,
start frequency, end frequency, frequency range, and time
duration.
Automation of the feature extraction process is considered
to be a challenging task because of the channel’s high and
time-varying ambient noise, and because of the movement
of the dolphins themselves that distorts the received signals.
Confronting with these challenges, Song et al [8] used an
array of hydrophones, and created an automated system to
detect Yangtze Finless Porpoise using Hilbert transformation
as a feature extraction method. Kohlsdorf et al [9] proposed
a probabilistic method of tracing distorted spectrogram
contours. This method is based on a thorough investigation
of fundamental units in these signals. While these methods
achieve good detection rates, their results are confined to
specific scenarios of high signal-to-noise ratios and do not
handle practical challenges such as man-made acoustic
noises, and channel’s time variations.
In this paper, we propose an automatic detector for
Dolphins’ whistles, referred to as Entropy, Correlation, and
Viterbi detector (ECV). ECV is aimed to detect all kinds
of Dolphin whistles, and does not require training data.
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The method does not consider a model for the whistle,
and other than assuming a bound on the rate of frequency
change, self-adapts to the statistics of the ambient noise.
Furthermore, ECV is not just a detector, but also provides
an estimate for the spectral features of the detected whistle.
As such, our contribution is twofold:

1) A robust detector of low complexity to automatically
detect dolphin whistles.

2) A novel way to extract spectral features from dolphin
whistles.

II. MODEL AND ASSUMPTIONS

Our system model includes a single hydrophone record-
ing opportunistic acoustic emissions. The recordings are
expected to include large noise portions and some dolphin
whistles. To cover large areas, the surveying vessel is moving
while collecting measurements. Consequently, the deployed
hydrophone is dragged behind the vessel, and the recording
includes noises from both the boat’s motor and flow noises.
The setup is illustrated in Fig. 1.

Fig. 1: An illustration of the recording technique used to
record dolphin whistles. The surveying vessel (1) moves in
order to cover large geographical area. The hydrophone (4)
is connected to the vessel using a cable which is attached
in two connection points: to a buoy (2) and a weight (3).
The buoy keeps the cable floating behind the vessel, and the
weight is attached close to the hydrophone.

Our noise model includes ambient isotropic noise and non-
isotropic noise terms. The former is modeled as an i.i.d
Gaussian process, while the latter is modeled by wideband
impulsive-like transients as well as correlated low-frequency
noises. To formalize, for an input signal y(t) containing
Dolphin’s whistle, we have:

y(t) = d(t) + n(t), (1)

n(t) = ng(t) + nh(t) + nu(t) (2)

where d(t) is a dolphin whistle, ng(t) and nu(t) represent
i.i.d Gaussian noise and a noise transient, respectively, and
nu(t) represents low frequency artificial noise.

Dolphins produce several types of acoustic signals. The
most commonly observed are Whistles and Clicks [10].
The former is characterized by a long emission with time-
varying chirp-like spectral content and is said to be used for

communications [11], while the latter is a wideband short
signal emitted in almost constant periods and is said to be
used for ranging and for forging [12]. In this work, we
focus on the identification of dolphin’s whistles. We assume
dolphin whistles are within a limited bandwidth of 5-24 KHz,
are continuous signals, and their duration ranges between 200
milliseconds to 2 seconds [13].

III. THE ECV DETECTOR

A. Key Idea

The ECV algorithm composes 3 main stages (see illustra-
tion in Fig. 2), namely an entropy detector, a correlation
detector, and a constrained Viterbi algorithm— also used
for feature extraction. All stages are built as a detection
mechanism, aimed to reduce false negative decisions. This
structure is chosen by our intuition that Dolphin noises are
stationary signals, in contrary to the noise. Hence, the system
starts with a band pass filter aimed to increase time-domain
signal-to-noise ratio and to remove possible correlated low
frequency noise components that may effect the entropy and
correlation detectors.
After this preprocessing stage, comes a spectral entropy
detector followed by a temporal correlation detector. Our
entropy detector uses the continuity of dolphin whistles
in the frequency domain in order to detect a decrease in
the spectral entropy. The time correlator, which utilizes the
continuousness of the whistle, is then applied. The result is
a time segment, suspected to include a Dolphin’s whistle.
Finally, detection verification and feature extraction are per-
formed using a constrained Viterbi algorithm. In particular,
we feed in the spectrum of the detected time segment, and
regard the time samples as observations and the frequency
bins as states. Then, the emission belief is heuristically set as
the signal’s normalized spectrum, while the transition prob-
ability is set to allow a maximum value for state/frequency
transitions. The result of this constrained Viterbi algorithm
is a track that follows the spectral contour of the whistle,
which can also be used to extract the spectral features
for classification. In the following chapters, we describe in
details the structure of ECV.

B. Entropy detector

The instantaneous spectral entropy of a time-frequency
power spectrogram S(t,f) is:

P (t,m) =
S(t,m)∑
f S(t, f)

(3)

And the spectral entropy at time t is:

H(t) =

N∑
m=1

P (t,m) log2 P (t,m) (4)

Observing (4), we note that H(t) is high for a random
signal like n(t) in (2), but is low for a stationary signal, as
we expect a Dolphin whistle to be. Hence, a decrease in
H(t) may indicate the existence of a signal. To find such
a decrease, in ECV we slice the recorded signal from the
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Fig. 2: A block diagram for the operation of ECV

channel using a sliding window, and compute H(t) for short
time frames. The sequence of H(t) values is then compared
to a detection threshold.

Each sequence of H(t) is adaptively normalized by the
mean and standard deviation values of H(t) determined as
’noise’, µH and σH , respectively, such that:

Ĥ(t) =
H(t)− µHnoise

σHnoise
(5)

Assuming i.i.d Gaussian distribution for the spectral entropy
of the noise, the threshold, Th is calculated assuming normal
distribution, such that [14]:

Pfa =
1√
2π

∫ ∞

Th

e
t2

2 dt (6)

where Pfa is a user defined parameter for the desired false
alarm. An Ĥ value lower than the threshold is then tagged as
a potential whistle. To validate detection, segments marked
as potentially containing whistles are filtered such that a
segment shorter than a minimum duration α or larger than
a maximum β, is discarded.And α and β are set by the
expected whistle duration [13].

C. Temporal correlation detector

Temporal correlation detection is done by correlating
adjacent segments of the recorded buffer flagged by the
spectral entropy detector. Let ~x(t), 0 < t < T be a time
domain buffer of duration T sec, and let ω represent the
correlation window size. Then, the correlation parameter is
determined as

C(t, ω) = Max
Corr(~x(t), ~x (t+ ω))∫ t+ω

t
|~x(τ)|2dτ

(7)

Assuming the change in frequency over time is subtle for a
dolphin’s whistle but is significant for an i.i.d noise, C(t, ω)
is expected to increase if ~x(t) includes a whistle. For fine
resolution, the temporal correlation (7) is performed for a
sliding window ~x(t), where ω is a user defined parameter
that trades off resilience to noise components (increasing
with ω) with sensitivity to signal variations (decreases as
ω increases).

While the output of the correlator in (7) identifies well a
target, it is sensitive to strong bursts of energy. Thus, in ECV,
we operate the correlator after the entropy detector. Another
reason for this is that the correlation method is better than
the entropy detector for identifying the starting and ending
points of the whistles. Detection using the correlation output
involves a predetermined threshold δ, where δ is chosen from
the receiver operating characteristics (ROC) in Fig.4b.

D. Constrained Viterbi Algorithm

We find that the sequence of entropy and temporal
correlators produce good detection results. However, it may
also induce significant false negatives for correlated noise
components, produced by signals e.g., boats’ thrusters. For
this reason, we validate detection by testing if the detected
signal fits a dolphin’s whistle. That is, we test that the
signal is not constant in time and in frequency. To that end,
we use a constrained Viterbi algorithm.

The Viterbi algorithm is traditionally used for probability
analysis in long observation sequences, and is mostly used
in communication applications [15]. Here, we employ it to
track over spectral lines. This is performed by considering
the frequency bins as states in a Hidden Markov chain,
and the time samples as observations. For the emission
matrix we use the normalized time-frequency spectrum
matrix ~x(t, f) containing the time window suspected to
include a whistle. The output of the Viterbi algorithm is
a probability to find a continuous path vector, ~P (t), that
represents frequency bins over time assumed to belong to
a whistle. Since the Viterbi algorithm is geared to find the
most probable state path [15], running it on the spectral
matrix ~x(t, f) yields a spectral contour line with the largest
continuous spectral energy.

Since a dolphin’s whistle is expected to be continuous in
frequency, we do not expect jumps in the frequency domain.
That is, the spectral line that corresponds to the time-
frequency characteristics of the whistle should not include
large variations within frequency binsbetween consecutive
time instances. To force such a solution, we constrain the
Viterbi algorithm by difining the state transition matrix to
be

Tij =

{
1/κ for i− κ/2 < j < i+ κ/2

0 o.w
(8)

where i and j are two frequency bin states, and κ is
the maximum number of states or frequency bins allowed
for a transition between two consecutive observations. We
set κ by the user’s expectation of the rate of change in
the spectral content of the dolphin’s whistle. Note that the
Viterbi algorithm will always issue a path p(t). Hence, to
removefalse detections we compare the path probability, i.e.,
the average of p(t), to a predetermined confidence value,γ.

E. Feature extraction

Since for dolphin’s census, not just the detection of
dolphins is of interest but also their classification, in ECV
we offer a way to extract the whistle features. While some
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classifiers, e.g. convolutional neural networks [16], can op-
erate directly on the raw signal, still feature extraction is
likely to improve classification performance. Once the trace
p(t) is obtained, the spectral features can be easily extracted
from the evaluated contour line. Specifically, we evaluate the
maximum and minimum frequencies of the whistle, the start
and end frequency, and the signal’s duration.

F. Example of Operation

An example of the operation of ECV is shown in Fig.3a
and Fig.3b. The figures illustrate the process of detection
and tracing of two dolphin whistles. Fig.3a shows the output
of the energy and correlation detections. We observe that the
entropy detector is more robust while the correlation detector
is more sensitive to noise. In turn, the entropy detector
smooths the signal and hence have low resolution, while the
correlation detector have fine time resolution. Considering
these differences, we use the entropy detector to detect the
whistles, and the correlation detector to find the starting and
ending point of a whistle.

Fig.3b shows the output of the constrained Viterbi algo-
rithm for the whistle in Fig.3a. The figure shows the spectro-
gram that is used as an. The figure shows the spectrogram
that is used as an input for the Viterbi algorithm, and its
resulting estimated path of the whistle. Fig.3b also shows
the probability of the estimated path. Note how high noise
causes the probability to decrease, and at certain times, to
diverge from the correct trace of the whistle, as seen in the
left panel.

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we explore the performance of ECV.
Our performance analysis is done in terms of the receiver
operating characteristic (ROC) to trade off detection and false
alarm rates and in terms of the accuracy of the evaluated
whistle’s features. To obtain enough statistics, we calculate
the ROC using a simulated database, while recordings of real
Dolphin whistles are used for verification.

A. Simulation Structure

To simulate the case of dolphin’s whistle, we consider a
large recording of 3 hours long, containing both simulated
noise and simulated whistle. The noise is an i.i.d white
Gaussian, while the whistle is simulated by a chirp signal.
A total of 1000 chirps are placed uniformly randomly in
different locations across the recorded buffer. The duration
of the chirp is uniformly generated between 0.2 s and 1.5 s,
and its start and ending frequencies are uniformly generated
between 5 kHz and 24 kHz. This setting allows us to explore
the performance of ECV for a variety of whistle-like signals.
The SNR is defined by:

SNR =10 log
Psig

Pnoise
(9)

where Psig stands for the sum of squared values across the
spectral line of the signal, and Pnoise reflects the sum of
squared values across the spectrum minus Psig.

B. Detection Analysis

ECV parameters can be fitted for many different whistles
characteristics and environments. In this work each parame-
ter is chosen based on simulation results. From the simula-
tions, the impact system parameters have on the ROCs’4 is
dominant for SNR = 0, for SNR > 0 we can achieve
zero false detection, and for SNR < 0 we can’t detect
whistle based on our model. The entropy detection threshold
ρ sets the initial amount of noise to whistles ratio fed into
the system 4a. The temporal correlation detector threshold
β is significant for finding the beginning of the whistle.
The smaller the threshold, the higher the accuracy in start
time detection. The Viterbi Algorithm confidence threshold
γ controls the level of certainty in the trace, favoring whistles
with stronger SNR. In 4c we learn that the Higher the
threshold the lower detection is as well as false alarms. The
rate of change in the spectral content affects the trace done
by the Viterbi Algorithm. Recall the Viterbi algorithm will
always find a path, Higher are suitable for whistles with
high frequency change rates.

Feature extraction accuracy evaluation over simulated whistles
Parameter / Error Mean STD
Start time [sec] 0.03 0.02
End time [sec] 0.9 0.07

Start Frequency [kHz] 1 0.8
End Frequency [kHz] 6 4.5
Max Frequency [kHz] 0.2 0.8
Min Frequency [kHz] 3.2 3.1

TABLE I: Feature extraction based on Viterbi algorithm
tracing for simulated whistles.

Feature extraction accuracy evaluation over real tagged whistles
Parameter / Error Mean STD
Start time [sec] 0.2 0.28
End time [sec] 7 35

Start Frequency [kHz] 2.8 2.6
End Frequency [kHz] 2.7 3
Max Frequency [kHz] 1.6 2.2
Min Frequency [kHz] 3.7 3

TABLE II: Feature extraction based on Viterbi algorithm
tracing for real whistles.

C. Analysis of Real Dolphin’s Whistles

In our analysis, we have simulated a Dolphin’s whistle
by a chirp signal. To verify the results of the simulations,
we now report results for real Dolphin’s whistle. Several
recording expeditions took place. The setup of these surveys
is illustrated in Fig.1. We obtained a total of 5 hours of
recordings all in the Mediterranean Sea across the shores of
central Israel, and 4 additional hours from the Red Sea. The
hydrophones used for these recordings use a sample rate of
96[KHz]. In addition, we have used one recording from the
**** competition, which included recordings off the coast of
France. From all these recordings, we have manually tagged
and measured the features of 140 whistles.

As a benchmark, we consider a commonly used system
for detection of Dolphin’s whistles, namely, the Passive
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(a) The upper panel shows a spectrogram containing two dolphin whistles. The middle panel shows an entropy detector and we observe
a decrease of the entropy level where a whistle exists. The lower panel shows the output of the temporal correlator, and an increase is
observed where whistles are located. Recording was collected off the coast of Ashdod, Israel in May 2018.

(b) Illustration of the constrained Viterbi module. The module first calculates the path probability, and then traces the whistles’ contours.
Notice that the algorithm will always find a path and is susceptible to deviate due to strong noise signals

Fig. 3: This figure illustrates how ECV detects and extracts features of dolphin whistles.
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(a) ROC for the Entropy detector. For SNR=0 dB, results show a
good trade off between detection and false alarm rates for threshold
ρ = 0.38.

(b) ROC for the Correlation detector. For SNR=0 dB, good
trade off between detection and false alarm rates is obtained
for β = 0.06.

(c) ROC for the Viterbi Algorithm module noise threshold. For
SNR=0 dB, good trade off between detection and false alarm rates
is obtained for γ = 0.92.

(d) ROC for the Viterbi Algorithm detector. For SNR=0 dB, good
trade off between detection and false alarm rates is obtained for
κ = 4.

Fig. 4: ROC for system parameters

Acoustic Monitoring open source software (PAMGuard) [4].
PAMGuard is used extensively by marine biologists, and can
be operated as an automatic detector. The system requires
several set parameters. Specifically, a threshold for the signal
energy, the searched bandwidth, the size of a median filter
used, etc. In our analysis, we choose these parameters as
the best that fitted our database. For ECV, we used the
parameters obtained as the best trade off from the ROC curve
for the simulated data, in particular see table III.

ECV parameters used for evaluation
ρ 0.35
β 0.11
γ 0.85
κ 8

TABLE III: Parameters selected from ROCs’ for evaluation
of real whistles

The results in terms of feature extraction obtained by ECV
for the real recordings are shown in Tables I,II. We observe

high accuracy in terms of the start time and start frequency.
Yet, the results show that ECV is not so accurate in terms
of the ending time of the whistle and its ending frequency.
Real dolphin whistles don’t maintain a constant SNR, getting
weaker at certain points over time, therefore detecting the
full duration of the whistle requires the algorithm to be
forgiving to sudden changes after a suspected whistle has
been detected. For example, this results in high sensitivity in
the drop of the entropy level but not as sensitive to the rise, as
ECV can’t be certain the whistle is over or just temporarily
weak. This can be easily corrected running ECV twice: once
as a causal system, and once when the time domain is flipped.

The results in terms of detection are described in Table IV.
Upon initial parameters based only on simulations, we
achieved approximately 50% detection rates but high false
alarm values, PAMGUARD on the other hand was giving no
false alarms but detection at rates lower than 5%, To achieve
a reasonable comparison we minimally adjusted ECV and
PAMGUARD parameters to find the tipping point, from there
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on the detection and false alarm rates diverge, detection to
0% or false alarms to high values. We observe that ECV
achieves a detection rate of roughly 27%. The results also
show that PAMGUARD achieves a lower detection rate of
20%. On the other hand, the results show that PAMGUARD
is slightly better in terms of false alarm. This is due to
PAMGuard mode of operation to correlate the received signal
with some known shapes of dolphin whistles. In particular
we used the configurations Sperm Whale Click and Dolphin
Whistle Detection configuration. For the ROCCA classifier
we used Northwest Atlantic Classifiers. These configurations
are currently being used by Morris Kahn Marine Research
Station, University of Haifa, Israel. Both configurations are
available at the PAMGUARD website.

Evaluation over real tagged whistles
ECV PAMGUARD +

Rocca

True
detection[%]

27 20

False detection
[1/minwindow]

10−2 10−3

TABLE IV: Detection results for real Dolphin’s whistles

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced ECV: a novel fully automatic
approach to detect and extract spectral features of dolphin
whistles. ECV works by a chain of detectors starting from
spectral entropy to detect stationary signals, followed by
correlation detector assuming the whistle is slowly changing
in frequency, and ending with a constrained Viterbi algorithm
to lock onto spectral contour lines. Different than common
approaches, ECV does not require man-in-the-loop interven-
tion, and its few parameters are set by transfer learning from
simulated database. ECV is therefore a robust solution to
the hard problem of detecting and characterizing dolphin’s
whistle in a noisy sea environment.
Our simulation results showed good detection performance
for SNR levels as low as 0 dB, with an accurate evaluation
for the whistle’s feature characteristics. Furthermore, our
analysis for real dolphin’s whistles from 9 hours of data
shows that, compared to the PamGuard benchmark software,
ECV achieves high detection rate at a small cost of reduction
in the false alarm rate.
Further work will improve the false alarm rate and the
accuracy of the feature extraction by considering a non-
casual spectral line analysis.
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