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Abstract—In this work we propose a new approach for
Radar targets classification by using Manifold Learning. We
focus on the acute problem of differentiating UAVs from birds.
Micro Movements of Radar target, resulting from UAVs rotating
propellers or birds’ wings flapping cause scattering of the Radar
echo signal in the frequency domain, named Micro Doppler. In
previous works, the Micro Doppler effect was analyzed with
classical methods such as SVM, KNN and Bayes. However, the
large dimensionality of the data, as well as the small dataset has
limited the performance achieved. The innovation in our work is
applying Manifold Learning based preprocessing of the Range-
Doppler map prior to SVM classification. Our results show the
effectiveness of the proposed method. With real life dataset, we
have achieved 82.9% correct classification per single target hit,
Vs. 74.4% achieved by classical methods on the same data set.

Index Terms—Birds, Classification, Diffusion Map, Manifold
Learning, Micro-Doppler, Radar, SVM, UAV

I. INTRODUCTION

Due to the increasing use of UAVs for military missions
including intelligence and armed attacks, an effective way
for differentiating UAVs from birds is essential. Birds cause
false alarms since they have velocities, elevation and Radar
Cross Section (RCS) similar to UAVs. Micro movements of the
target, resulting from UAVs rotating propellors or birds’ wings
flapping, cause scattering of the Radar echo signal, named
Micro Doppler effect [1], [2]. Analyzing the Micro Doppler
effect may assist us in distinguishing between UAVs and birds
[3]–[7].

Range Doppler Maps are matrices derived from the Radar
echo signals, where each cell of the matrix describes the
energy of the reflected Radar signals for a given range and
velocity (resulting from doppler shift). The x axis describes
velocities. The y axis describes the different ranges, and each
row is called a Range Gate.

Due to the large dimension of the Range Doppler Map,
Principal Component Analysis (PCA) was used for dimension
reduction by computing the change in basis transformation,
such that the first N components best represent the data. The
other components can then be ignored with minimal data loss.

Machine Learning algorithms such as Support Vector Ma-
chine (SVM) apply a classification method which constructs
the best hyper plane that separates the data to its classes. This
hyper plane is then used for targets classification. However,
the large dimensionality of the data prevents the construction
of an effective hyper plane, and therefore PCA was applied in
previous works as preprocessing for dimensionality reduction.

Manifold Learning theory [8] builds on the assumption that
the sampled data requires just a few parameters to represent
it, yet it resides in a higher dimensional space. Manifold
Learning techniques attempt to study and use the structure of
the data, such as by calculating distances between points with
the constraint that the path lies on the low-dimensional sub-
space of the data. We expect that using the lower dimensional
structure of the data provided by Manifold Learning as input
to a classification algorithm, would yield better results than
PCA preprocessing.

In this paper we will discuss a Radar targets classification
method based on Manifold Learning. Manifold Learning is a
non-linear transformation, and this new approach has improved
the classifier performance.

Section II discusses the common micro doppler based meth-
ods used for classification. Section III provides a description
of Manifold Learning, and the Diffusion Map algorithm used
in this paper. Section IV presents the problem with the
embedding of new data points and offers a solution. Section
V describes our algorithm in its entirety. Section VI provides
the performance of our solution Vs. the common, PCA based
solutions. Section VII concludes this paper.

II. RELATED WORK

Several methods exist that use the Micro Doppler effect
for classification and information gathering purposes. One
method [3], [4] takes an STFT transform of the time domain
radar signal, and extracts its features. This method relies on
the signal having a known structure, and the features are
problem specific. For example, if the STFT transform is in a
sinusoidal form, the amplitude, frequency, DC component and
phase features are extracted and used for classification. Other
methods [5]–[7] are based on Machine Learning, and can be
used in situations where there is no obvious structure of the
data. By this method, STFT transform features are extracted
using the PCA algorithm. The data is then fed to a classifier,
most commonly SVM. Different improvements were offered,
such as removing the center of mass velocity from the STFT
transform, or using Gabor filters prior to the SVM. Since this
method relies on Machine Learning, a training set should be
used to find the change of basis transformation for the PCA
algorithm and train the classifier.
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Fig. 1. Example of (a) 3D data and (b) its non linear 2D embedding

III. MANIFOLD LEARNING AND DIFFUSION MAP

Points that reside in a high-dimensional space can some-
times be represented as a low-dimensional sub-space. We call
this subspace a Manifold. It is advantageous to transform the
data to the low-dimensional space that can represent it better.
This transformation is not necessarily linear. As an example,
Figure 1 shows 3D data and its non-linear 2D embedding. The
high-dimensional Euclidean distance ignores the structure of
the data while calculating the distance between 2 points. The
Diffusion distance constructs a graph where the weight of an
edge connecting two points is based on their high-dimensional
Euclidean distance (where closer points have higher weights).
The Diffusion distance finds paths between two endpoints by
traveling along high-weight edges, and uses these paths to
calculate a distance function.

Diffusion Map [8], [9] is a Manifold Learning based al-
gorithm that transforms points from the Euclidean space to
Diffusion space. It can be shown that the Diffusion distance
in the Euclidean space is exactly the same as the Euclidean
distance in the Diffusion space. Therefore, we transform the
data using the Diffusion Map algorithm, and then may use
common classification methods with the Euclidean distance.

Moreover, since in the Diffusion space the elements in
the vector that describes the point are mostly sorted by their
significance, we can use only the first few elements to calculate
the Euclidean distance. This lowers the dimensionality and
complexity significantly with minimal distortion.

Algorithm 1 describes the steps to construct the diffusion
map.

IV. OUT OF SAMPLE EXTENSION

Unlike the PCA method which provides the axes on which
the points are cast, the Diffusion Map algorithm doesn’t
provide us with a way to embed new points. This is because
the PCA transformation is linear, and we can calculate the

Algorithm 1 Diffusion Map
1: Choose values for the parameters: ε > 0, t ≥ 1, l ≤ N

where N is the number of points
2: Construct a matrix K such that

Kij = exp

(
‖xi − xj‖22

2ε2

)

3: Define the matrix P such that Pij = Kij ·
(∑

j Kij

)−1
4: Consider P as a Transition Matrix of a Markov Chain
5: Calculate the E.V. of P t, {λti, ψi}
6: Embed each sample ψl

t (xi) = [λt1ψ1 (i) , . . . , λ
t
lψl (i)]

7: Approximate distance between two points by

d (xi, xj) =
∥∥ψN

t (xi)− ψN
t (xj)

∥∥ ≈ ∥∥ψl
t (xi)− ψl

t (xj)
∥∥

transformation of a new point by interpolation. In practice,
we calculate the transformation for a new point by projecting
it on the axes found in the PCA algorithm. However, the
Diffusion Map transformation is not linear, and thus it is not
possible to apply a transformation of a new data point in a
similar way. The inability to embed new points is problematic
because it means that for each new point we want to classify,
a new embedding must be calculated, and a new classifier
must be trained from the ground up. This is highly inefficient.
The solution is to approximate the embedding for new points
using interpolation methods. In this context, the interpolation
process is often called Out of Sample Extension (OoSE). This
means that we can perform most of the calculation during
the training stage, and leave only few steps for classification.
We achieve this by using an OoSE algorithm called Laplacian
Pyramid Extension (LPE) [10]. In this algorithm we represent
the embedded points using other points and their embedded
forms, and representation coefficients. We then represent new
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Fig. 2. (a) 3D data and its (b) 2D embedding with extension. The embedding was calculated only for points marked ◦ and was extended for points marked ?

points using other points and their embedded forms, and the
same representation coefficients. An example of this algorithm
is shown in Figure 2.

Given the function f to interpolate, The Laplacian Pyramid
Extension is performed by the algorithm 2.

Algorithm 2 Laplacian Pyramid Extension
1: Choose values for the parameters ε, lmax, Emin

2: Define Kl = exp

(
‖xi−xj‖22

2 ε
2

2l

)
3: Calculate qli =

∑N
j=1Kl (xi, xj)

4: Iteratively calculate the following until l ≥ lmax or
maxxk dl (xk) ≤ Emin:

sl (xk) =

{∑N
i=1

(
qli
)−1 · Kl (xi, xk) · f (xi) l = 0∑N

i=1

(
qli
)−1 · Kl (xi, xk) · dl (xi) l ≥ 1

dl (xk) = f (xk)−
∑l−1

m=0 sm (xk) , l ≥ 1
5: Interpolate the function f on a new point x̃ by

f (x̃) ,
l∑

m=0

sm (x̃)

V. ALGORITHM

Figure 3 shows the structure of the algorithm developed in
this work. Since the target is detected by the Radar prior to
classification, the algorithm inputs are Range Doppler Maps,
the corresponding Range and Velocity of the detected targets
and the correct classification for the training set. Each map
is cropped such that only the target Range Gate vector with
about 200 elements in the velocity axis, symmetrical about the
target, is kept. Each vector is normalized such that its values
are between zero and one. We use this cropping because the
micro movements are in the same range as the target, and
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Fig. 3. Flowchart of the classification algorithm

their velocities in relation to the target are bounded. Since
the Micro Doppler effect is confined to this 200-dimensional
vector, we should be able to classify each map using only
this vector. The Diffusion Map algorithm is used on the
training set (where each sample is a 200-dimensional vector)
to generate the embedded form of each sample. We use
these embedded points to train an SVM classifier, and to
find the representation coefficients from the LPE algorithm.
This concludes the training phase. To classify a new target,
provided its Range Doppler map, we center and crop it as
before. To embed a point, we use the LPE algorithm, using the
representation coefficient we calculated in the training phase.
We then take the embedded form of the range doppler map
and feed it to the SVM classifier we trained. The result of the
SVM classifier provides the new target classification.

While applying the algorithm on real life sampled data,
several hyper parameters shall be tuned to control the pre-
processing stage. We define the Crop Size as well as the
Eigenvalue Power (t) and Embedded Dimension (l) which
control the Diffusion Map stage. Additionally, a cost ratio for
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Fig. 4. Examples of Range Doppler maps of (a) drone and (b) bird, with the target marked

the SVM classifier defines which error is costlier, type I or
type II, and by how much. It is required in cases where the
training data is biased, i.e., in cases where there are much more
samples from one class, or when the classifier is biased, i.e.,
the difference between the TPR (True Positive Rate, drone
classified as a drone) and TNR (True Negative Rate, bird
classified as a bird) is too large.

Another hyper parameter we tuned in the Diffusion Map
algorithm was ε, which is the standard deviation of the
Gaussian kernel. We found that it is best to choose a value
dynamically, to better match the data. We chose this value as
the median Euclidean distance of all pairs of points, multiplied
by some constant. This constant was another hyper parameter
of the entire algorithm.

The last hyper parameter we used controlled the locality
of the data. When calculating the pairwise distance (which is
used in the Gaussian kernel), for each point we forced the
farthest points to have an infinite distance (which means the
Gaussian kernel will be zero). This was done to make sure
that the paths found by the Diffusion distance are on high-
weighted edges. The percentage of points whose distance was
set to infinity is the last hyper parameter we implemented.

TABLE I
FINAL VALUES FOR THE HYPER PARAMETERS OF THE ALGORITHM

Hyper Parameter Value
Crop Size 201
Eigenvalue Power, t 1
Embedded Dimension, l 100
SVM Cost Ratio 4
Standard Deviation Constant 2
Locality Factor 40%

Different sets of hyper parameters were tested using k-
fold validation to evaluate the success rate of the algorithm.
We performed a sweep over different values of the Hyper

Parameters to choose their optimal values. Table I shows the
values chosen for the final algorithm.

To recap, the algorithm is as follows: Crop the data to be
centered about the target and normalize it, transform it into
the Diffusion space using the Diffusion Map algorithm and
train an SVM classifier on a set of tagged samples. Then use
the Laplacian Pyramid Extension algorithm to interpolate an
embedding for the testing set. Following the training process,
the classifier is ready to classify new targets.

VI. PERFORMANCE EVALUATION

We have analyzed a total of 461 samples including 118
Drones and 343 Birds. The data was in the format of Range
Doppler maps. Examples of the data set are shown in Figure 4.
Manifold Learning preprocessing followed by SVM classifier
was compared to a classical solution using PCA [5]–[7] pre-
processing, with the same embedded space dimension (100).
The results are shown in Table II. Our results show that using
Diffusion Map based Manifold Learning has provided a better
performance with real data. Other preprocessing methods that
were recommended in the literature were implemented and
evaluated yet gained a negligible improvement Vs. PCA. Table
II shows the results of applying the classical method Vs.
Manifold Learning based performance.

TABLE II
PERFORMANCE OF THE PCA BASED SOLUTION VS. THE MANIFOLD

LEARNING BASED SOLUTIONS. THE TABLE DESCRIBES THE TPR (TRUE
POSITIVE RATE, DRONE CLASSIFIED AS A DRONE), TNR (TRUE

NEGATIVE RATE, BIRD CLASSIFIED AS A BIRD) AND BA (BALANCED
ACCUARCY) OF THE TWO METHODS

PCA Manifold Learning
TPR 77.0% 86.1%
TNR 71.8% 79.8%
BA 74.4% 82.9%



VII. CONCLUSIONS

A new approach for Radar targets classification using Mani-
fold Learning was successfully implemented as a nonlinear di-
mensionality reduction stage followed by SVM classification.
With a real-life dataset, a probability of 82.9% correct classifi-
cation per single target hit was achieved, Vs. 74.4% probability
of correct classification rate with classical Machine-Learning
preprocessing methods such as PCA.
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