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ABSTRACT

In this paper, we propose a new unsupervised domain adaptation
method based on the Riemannian geometry of Symmetric Positive-
Definite (SPD) matrices. The proposed domain adaptation is based
on parallel transport (PT) and moments alignment. We show that
this method facilitates meaningful comparisons between data points
from different domains, while preserving the inherent internal struc-
ture of each domain. Experimental results demonstrate the adap-
tation of high-dimensional noisy electrophysiological signals col-
lected from different subjects.

Index Terms— Riemannian manifolds, parallel transport, trans-
fer learning, high-dimensional signal analysis

1. INTRODUCTION

Recent technological progress has led to a surge in the availability of
highly complex and heterogeneous data in a broad range of domains.
This paper addresses two emerging problems in the analysis of such
data: domain adaptation and coping with their high-dimensionality.

Notably, data in high dimension usually do not live in a Eu-
clidean space. Therefore, applying analysis or learning techniques,
which typically rely on Euclidean distances, directly to the data often
leads to poor performance. By departing from Euclidean spaces, and
considering instead non-Euclidean Riemannian geometry facilitates
the extraction and utilization of the structure of the data, allowing for
meaningful data point comparisons in high dimension. Particularly
in this work, we focus on the Riemannian geometry of covariance
matrices, which are Symmetric Positive-Definite (SPD) and consti-
tute a cone manifold with a known Riemannian metric [1, 2]. The
combination of covariance matrices as high-dimensional data fea-
tures with their inherent Riemannian geometry has proven to be pow-
erful in many tasks [3–5]. For example in [4, 6], a new representa-
tion in a Euclidean space was obtained by projecting each covariance
matrix to the tangent plane of the Riemannian manifold at the mean
of the data. This representation was shown to be highly successful
in capturing the essence of complex data, leading to state of the art
classification results in a large and broad variety of applications, e.g.,
Brain Computer Interface (BCI) [6] and medical imaging [3].

However, when considering data arising from several domains,
for example, using different acquisition systems, in different ses-
sions, or from different subjects, the covariance matrices might ex-
hibit highly different structures, rendering the mere use of the Rie-
mannian metric and the projection to a single tangent plane insuf-
ficient. Indeed, we show here that the covariance matrices of Elec-
troencephalography (EEG) recordings from multiple subsets lie in
different regions of the SPD manifold, and therefore the Euclidean
representation proposed in [6] does not accommodate appropriate
comparisons. This problem calls for domain adaptation, where a

given model or representation, which is well performing in a partic-
ular domain, is adapted to a different, yet related domain [7, 8].

In this paper, we propose to use a geometric preserving trans-
formation for domain adaptation. Specifically, we further exploit the
Riemannian geometry of SPD matrices and parallel transport (PT)
the covariance matrices along the cone manifold to a common lo-
cation [9, 10]. Indeed, in [11] PT attained a joint representation of
several data sets that appropriately accommodates multiple domains
in BCI and sleep research problems. One shortcoming of PT is that
it does not take into account the internal structure of the data from
each domain, but rather depends only on the Riemannian mean of
the covariance matrices. Consequently, two data sets from two do-
mains with different structures, but with the same Riemannian mean,
will undergo the same adaptation via PT. As we show in the sequel,
this could significantly hamper performance.

Here, we propose to complement PT with an additional proce-
dure based on moments alignment that takes into account the internal
structure of data from each domain as well as the inter-relations be-
tween the domains. We show that this procedure facilitates improved
domain adaptation. Experimental results demonstrate adequate un-
supervised adaptation of high-dimensional noisy EEG recordings
[12], collected from different subjects. Moreover, we show that
based on our method, training a classifier on recordings from mul-
tiple subjects, and then, testing it on recordings from a new, unseen
subject without any new labels, is possible and gives rise to accurate
transfer learning.

This paper is organized as follows. In Section 2, we present
preliminaries on the Riemannian geometry of SPD matrices. In
Section 3, we formulate the problem, present the proposed domain
adaptation method. Section 4 shows experimental results on high-
dimensional noisy electrophysiological signals. Finally, we con-
clude the paper in Section 5.

2. RIEMANNIAN GEOMETRY OF SPD MATRICES

A symmetric matrix P ∈ Rd×d is positive-definite if all its eigen-
values are strictly positive, or equivalently, if vTPv > 0 for every
nonzero vector v. The set of all SPD matrices is an open convex
cone, constituting a differential Riemannian manifoldM. Let TPM
be the tangent space at the point P ∈ M equipped with the follow-
ing inner product〈
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where S1,S2 ∈ TPM are two symmetric matrices. This Rie-
mannian manifold has a unique geodesic between any two SPD ma-
trices P1,P2 ∈M, whose length defines a distance given by:



δ2R (P1,P2) ,

∥∥∥∥log

(
P
− 1

2
1 P2P

− 1
2

1

)∥∥∥∥2
F

=

d∑
i=1

log2 (λi) ,

(2)

where ‖·‖F is the Frobenius norm, log(·) is the matrix logarithm
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SPD matrix P ∈ M, the Logarithm chart mapping an SPD matrix
Pi ∈M to Si ∈ TPM is defined by

Si = LogP

(
Pi

)
, P

1
2 log

(
P−

1
2PiP

− 1
2

)
P

1
2 . (3)

The inverse map is the Exponential chart, given by
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The Riemannian mean of a set
{
Pi ∈ M

}N
i=1

is defined by the
Fréchet mean:
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Particularly, the Riemannian mean of two SPD matrices P1,P2 ∈
M is located at the midpoint of the connecting geodesic and is ex-
plicitly given by
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The Riemannian mean of a general number of matrices can be
computed using an iterative procedure [4, 11]. Given a set

{
Pi ∈

M
}N
i=1

, the pairwise Riemannian distances can be approximated by
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2 and P is the Riemannian mean
of {Pi}. Lastly, we denote the vector representation of any symmet-
ric matrix S by

s = vec
(
S
)

where vec(·) is a vector consisting of the elements of the upper trian-
gular of a symmetric matrix S, with

√
2 weights on its off-diagonal

elements such that

‖si − sj‖2 = ‖Si − Sj‖F

for any two symmetric matrices Si and Sj , where si = vec (Si)
and sj = vec (Sj).

3. PROPOSED METHOD

Let
{
X

(1)
i

}N1

i=1
,
{
X

(2)
i

}N2

i=1
, . . . ,

{
X

(K)
i

}NK

i=1
be K subsets,

where each subset k contains Nk matrices of data observations
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for simplicity we assume observations with zero mean.
We focus here on a body of previous work [1, 4, 5], where co-

variance matrices, which are particular SPD matrices, are used as
features, exploiting their Riemannian geometry. In their seminal
work [4], Barachant et al. proposed to project each covariance ma-
trix P

(k)
i to the tangent space TPM, where P is the Riemannian

mean of all the matrices. This representation was shown to be highly
successful in capturing the essence of complex data. However, we
show here that when the data sets live in various domains this repre-
sentation highly depends on the domain.

To facilitate comparisons between data from various domains,
we propose to further exploit the Riemannian geometry of SPD ma-
trices and to PT all the matrices along the cone manifold to a com-
mon location. This method was first introduced in [11], and here we
briefly review its main principles and steps.

First, the Riemannian mean of each subset k, denoted by P
(k)

,
is computed. Second, a common point Q ∈ M is set, for example,
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where D = d (d+ 1) /2. For details and rigorous analysis, we refer
the readers to [11].

One shortcoming of PT is its sole dependence on the Rieman-
nian mean of each subset, and that it does not take into account the
structure of the subset. Therefore, we propose to complement PT
with an additional refinement step, particularly, a unitary rotation in
order to align the primary sources of variability of the subsets.

Formally, let
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vectors in RD resulted from PT (7). For each k ∈ {1, 2, . . . ,K}, let

Z(k) =
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z
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be a matrix consisting of the new representation of the data in each
data set. In addition, let U (k) ∈ RD×D be a matrix whose columns
are the left-singular vectors of Z(k), ordered by their respective
singular-values, from the largest to the smallest. Note that by our
previous assumption, the sample mean of the vectors is zero. The
proposed adaptation refinement is carried out by the following rota-
tion:

Y (k) =
(
U (k))TZ(k), ∀k.

Several remarks due at this point. First, we assume that the
singular-values are simple so that each singular-vector is unique.
Second, to circumvent possible singular-vector sign ambiguity, un-
der the assumption that the angles between the corresponding singu-
lar vectors are acute, we flip the orientation of the singular-vectors
to satisfy this assumption. Namely, we set a certain subset to be a
reference set. Without loss of generality, let subset k = 1 be the



Fig. 1. The first two principal components of the representation of the trials obtain by the different algorithms: (a) “Baseline”, (b), “Mean
Transport”, (c) steps (1) - (3a) of Algorithm 1 and (d) Algorithm 1. Each point represents a single trial. Trials from two subjects and the
response to two somatosensory stimuli and one visual stimulus are presented. The plots on the left are colored by the subject and the plots on
the right are colored by the stimulus.

reference set. For each of the other subsets k 6= 1, we flip the orien-
tation of the singular-vector u(k)

j , given as the jth column of U (k),
according to:

u
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j ← sign
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The domain adaptation algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS

We applied the proposed domain adaptation to EEG recordings from
64 channels organized in subsets corresponding to 11 subjects in
ages ranging from 7 to 16 years, where each subject is considered as
a different domain. The recordings were conducted in trials of about
1 second. In each trial, the EEG response to one of several stimuli
was recorded. More details about the data appear in [13]. There
are many reports that study the electrical response patterns to stim-
ulation, named evoked potentials [14–17]. However, they all rely
on specific feature extraction that are heavily tailored and adapted to
the specific study and paradigm, in contrast to the currently proposed
method.

Three pre-processing steps were applied: (i) down sampling
to 1KHz, (ii) exclusion of malfunctioning electrodes and highly
noisy trials, and (iii) applying the Fourier transform to each channel
recording in each trial and taking the absolute value. After pre-
processing, the entire data set included 37 electrodes (channels) and
contained 80− 500 repeated trials per stimulus for each subject. Let
X

(k)
i ∈ R37×Ti,k be the absolute value of the Fourier transform of

the EEG recordings from the k-th subject at the i-th trial.
For illustration purposes, we first considered recordings only

from two subjects and their EEG responses to 2 somatosensory stim-

uli (right arm and left arm nerve stimulation) and 1 visual stimulus
(light projection with a flash). From each stimulus, we collected the
responses from 50 repeated trials. Consequently, we organized the

recordings in two subsets
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We applied Algorithm 1 to
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and

compared the result to two other methods. In the first method, which
we term “Baseline”, the covariance matrices are used as features
with their Riemannian distance, without additional processing. In
the second method, which we term “Mean Transport” (MT), the Rie-
mannian mean of each subset is subtracted from the covariance ma-
trices as proposed in [4]. To emphasize the contribution of the dif-
ferent algorithmic steps, and particularly, the refinement by moments
alignment, we also report the result of steps (1)-(3a) of Algorithm 1.

For visualization purposes, we applied PCA to the obtained rep-
resentation of the trials by the different algorithms and depict in Fig-
ure 1 the two principal components. Consequently, each point in
the figure is associated with the obtained representation of one trial.
Circles mark trials of subject 1 and diamonds mark trials of subject
2. The left and right scatter plots only differ by color – on the left,
the trials are colored by the subjects, and on the right, the trials are
colored by the different stimuli.

Figure 1(a) presents the PCA of the representation obtained by
the “Baseline” method. We observe that trials with the same stimu-
lus applied to different subjects are embedded in different locations.
Figure 1(b) presents the PCA of the representation obtained by the
“Mean Transport” method. On the left, we observe that the trials are
not clustered by the subjects, implying on some degree of domain
adaptation. However, on the right, we observe that the internal struc-
ture is lost, i.e., responses to the somatosensory stimuli are mixed.
Figure 1(c) presents the PCA of the representation obtained by steps
(1)-(3a) of Algorithm 1 and Figure 1(d) presents the representation



Algorithm 1 Domain adaptation using Riemannian geometry

Input: K subsets
{
X
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(k)
i

}Nk

i=1
, k = 1, . . . ,K.

Output: K matrices
{
Y (k) ∈ RD×Nk

}K
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, D = d (d+ 1) /2

whose columns are the aligned vector representations of the input
data matrices.

1. For each subset
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2. Compute Q, the Riemannian mean of
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3. For k = 1 . . . ,K:

(a) For i = 1, . . . , Nk:
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(b) Compute Z(k) (8) and apply SVD to obtain U (k).

(c) If k 6= 1, for each j ∈ {1, 2, . . . , D} update the
columns of U (k):
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(d) Compute Y (k) =
(
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obtained by the full algorithm. In Figure 1(d), we detect 3 distinct
clusters corresponding to the 3 stimuli without dependence on the
particular subject, indicating successful domain adaptation. In ad-
dition, Figure 1(c) entails that the refinement step in Algorithm 1 is
essential.

Next, we extended the examination to the entire set of 11 sub-
jects, considering their EEG responses to 3 different types of stimuli:
somatosensory, visual and auditory. Figure 2(a) presents the results
obtained by the “Baseline” method and Figure 2(b) presents the re-
sults obtained by Algorithm 1. We observe that Algorithm 1 attains
three distinct clusters corresponding to the three different stimuli
without dependence on the subjects identity. To provide quantita-
tive assessment, we applied classification with leave one subject out
cross-validation based on the representation obtained by the 3 com-
pleting methods. Figure 3 presents the classification results when
using a cubic SVM. The obtained average classification rates are
63.2% (“Baseline”), 72.2% (“Mean Transport”), 84.9% (steps (1)-
(3a) of Algorithm 1), and 94.9% (the full Algorithm 1). We remark
that the sign of the second principal components of subjects 5 and
6 were manually flipped (note that their respective angles were 89◦

and 95◦). In practice, this could be achieved with an extra knowledge
of only few labeled points. Importantly, besides the above note, the
domain adaptation reported here was achieved in an unsupervised
manner. Namely, without any knowledge of the stimuli, the high-
dimensional noisy EEG recordings from different subjects were ad-
equately adapted, so that a classifier can be trained on data from one
subject and applied to data from another test subject, without any
labels of the test subject.

Fig. 2. The first two principal components of the representation of
the trials obtain by: (a) “Baseline”, (b) Algorithm 1. Each point
represents a single trial. Trials from 11 subjects and the response to
three different types of stimuli are presented. The plots the left are
colored by the subject and the plots on the right are colored by the
stimulus.

Fig. 3. Classification results of the response to three different stimuli
from 11 subjects, using a cubic SVM, based on the representation
obtained by the different algorithms.

5. CONCLUSIONS

Analyzing related data sets living in different domain is a long-
standing problem, which calls for domain adaptation techniques. In
this paper, we exploit the Riemannian geometry of SPD matrices
and present an unsupervised approach for domain adaptation based
on PT and moments alignment. The use of Riemannian geometry
facilitates natural incorporation of both the intrinsic structure of
each data set as well as the relations between the different data sets.
Experimental results demonstrate the applicability of the presented
domain adaptation method to a challenging problem involving high-
dimensional noisy electrophysiological signals.
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