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The extraction of models from data (in a sense, the “understanding” of the physical 

laws giving rise to the data) is a fundamental cognitive as well as a scientific 

challenge. The demonstration we present revolves around a geometric/analytic 

learning approach capable of creating minimal descriptions of parametrically-

dependent unknown nonlinear dynamical systems. This is accomplished by a data-

driven extraction of useful intrinsic-state variables and parameters, in terms of which, 

one can empirically model the underlying dynamics. This approach follows recent 

trends in data analysis and signal processing, operating directly on observations, 

systematically creating accurate representations from data, without deriving models in 

closed-form and without any prior knowledge about the system dynamics. In 

particular, we present a kernel-based manifold learning approach, which learns the 

intrinsic geometric structure underlying the observations by capturing and exploiting 

the co-dependencies between the different dimensions of the data. 

The proposed presentation is based on our recent paper (Yair, et al., 2017) and will 

include a live demonstration of the key capabilities of this method. Concretely, given 

high-dimensional, nonlinear, and multimodal observations of nonlinear dynamical 

systems, we will show in real time, that our method, without any prior knowledge, can 

provide meaningful low-dimensional representations, which: (i) accurately model the 

system, (ii) are invariant to the observation modalities, and (iii) facilitate system 

imitation and predictions. 

The demonstration setup includes: 

1. Nonlinear dynamical systems. 

For the purpose of demonstration, we will set up three prototypical dynamical 

systems: (i) a mass on a spring, (ii) a simple pendulum, and (iii) an elastic 

pendulum. The mass on a spring can be described using a single linear ordinary 

differential equation (ODE) and it has a closed-form solution with a single normal 

form. This system will be used for validation, i.e., for showing that known 

solutions and principles are indeed recovered empirically in a data-driven manner.  

The simple pendulum is slightly more evolved. This system can be described 

using a single nonlinear ODE and it does not have a known closed-form solution. 

However, in the regime of small swings, the system can be linearized, exhibiting a 

single normal form. We will show that in both regimes (linear and nonlinear), 

accurate normal forms can be recovered from observations. The third system, the 

elastic pendulum, can be described using two nonlinear coupled ODEs, which do 

not have a closed-form solution as well. This system will be used to demonstrate 

that our method is capable of recovering more than one normal form in the same 

agnostic manner. 

2. Multimodal nonlinear acquisition of system observations. 

Our nonlinear observation function is a camera recording the dynamical systems 

in motion. To demonstrate the invariance to the observation modality and to show 



that no image processing tools are used, the acquired video from the camera is 

randomly scrambled prior to the processing by the presented method.  

 


