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I. INTRODUCTION

YouTube-8M [1] is a large-scale video dataset containing
more than 8 million labeled YouTube videos. Announced by
Google in September 2016, it is the first video classification
dataset whose size and diversity are comparable to existing
image datasets. The labels of the videos in the dataset are
machine-generated, from a vocabulary of 3862 categories. A
video may have multiple labels, where on average there are
3 labels per video. Although YouTube-8M dataset has a great
potential and had already advanced research on video classi-
fication, there are still difficulties arising from computational
challenges related to the size of the dataset, from noisy and
incomplete labels, and from higher complexity compared to
image datasets due to the temporal dimension.

In this work, we train several recurrent neural networks for
video classification using a subset of YouTube-8M dataset.
We focus on computational complexity analysis, and provide
experimental results aimed at enabling the efficient devel-
opment of low-complexity network architectures for both
fast training and inference. Similarly to [1], our approach is
based on extracting frame-level features using the powerful
Inception-V3 architecture. We use recurrent neural networks
with either long short-term memory (LSTM) or bidirectional
LSTM layers to capture temporal information. Finally, we
evaluate the performance of a transfer-learning approach using
an architecture trained on only a part of our dataset. We
demonstrate that transfer learning offers a good complexity-
performance tradeoff for the video classification task.

II. METHODS
A. Dataset and preprocessing

We selected 10 categories from YouTube-8M and down-
loaded 1,000 randomly-selected videos for each category
(resulting in a dataset of 10,000 videos). The categories
are: Athlete, Car, Cartoon, Musical ensemble, Pet, Aircraft,
Cosmetics, Food, Nature and Toy. For reduced complexity, the
videos were down-sampled to 1FPS. Up to the first 360 frames
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were extracted from each video, with average number of 246
extracted frames and average length of 4.33 minutes.
Following a similar approach taken by the creators of
YouTube-8M, we process each frame using an Inception-
V3 network pretrained on ImageNet (with 82.8% accuracy)
to obtain a 2048-dimensional feature vector. The features
are extracted from the activations of the last hidden layer.
Inception-V3 consists of inception modules that apply multiple
convolutions of varying kernel sizes in parallel to the input.
This way, features at multiple scales are extracted at each
layer, resulting in an efficient and compact representation
of the frames. For each video, we concatenate the extracted
feature vectors in chronological order to obtain a frame-level
representation in the feature space. In this representation, each
video is a matrix with feature vectors as columns, where the
number of columns corresponds to the number of frames.

B. Network architecture

Figure 1 shows the architecture of our video classification
network. The input to the network are feature sequences,
extracted from video frames as described in Section II-A. We
consider different kinds of recurrent neural network (RNN)
architectures, which are based on either LSTM or Bidirectional
LSTM layers. For reduced computational complexity and for a
low-delay inference, we use at most 3 LSTM/BiLSTM layers
in our experiments. The output of the last LSTM/BILSTM
layer is mapped to a probability distribution over the categories
using a fully-connected layer followed by softmax.

The use of recurrent networks is motivated by their ability
to capture temporal information, which is highly important
for the task of video classification. Compared to a possible
approach of using feed-forward networks with 3D convolu-
tions (i.e., operating on the temporal axis as well), RNNs
with 2D convolutions offer a more efficient and less complex
approach for learning spatiotemporal features. As a category
of a video may depend on long-term temporal dependencies
among frames, we use LSTM/BiLSTM layers that are better
suited for capturing such dependencies. We examine as well
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Fig. 1: Our network architecture. The LSTM/BiLSTM part is used with permission from C. Olah.

whether the additional complexity of BiLSTM layers results
in a performance gain compared to LSTM.

Training deep networks on video datasets is typically highly
time consuming. Thus, we consider a transfer learning setting
where the network is initially trained using data from 5 cate-
gories and then fine-tuned using the data from the remaining 5
categories. In the fine-tuning stage, the fully-connected layer
is trained. This results in a significant saving in training time.

C. Training

We partition the data into train and test sets, such that 80%
of the videos in each category are used for training and the
remaining 20% for testing. We limit the number of epochs
in each training process to 500. During training of LSTM or
BiLSTM layers, the sequences in each mini-batch are padded
to the length of the longest sequence in the mini-batch. To
reduce padding and thereby improve training performance, the
sequences are sorted by sequence length, so that sequence
lengths in each mini-batch are approximately the same. In
the training process, we use stochastic gradient descent with
momentum. We use learning rate value of 0.01, momentum
value of 0.9 and mini-batch size of 50. The hardware used is
Intel Core 17-7700K 4.20GHz CPU, NVIDIA GeForce GTX
1080 Ti GPU and 32GB RAM.

III. PERFORMANCE EVALUATION

We trained several network architectures using datasets of
different sizes. We started with 5 categories (Athlete, Car,
Cartoon, Musical Ensemble and Pet) and then used all 10
categories (adding: Aircraft, Cosmetics, Food, Nature and
Toy). In addition, we performed transfer learning from 5 to
10 categories. The evaluation method we used is the hir@1
metric, defined as the fraction of test samples whose predicted
top category concurs with the ground truth.

For performance evaluation, we used confusion matrices
and precision-recall graphs. A confusion matrix visualizes
the number of times each category was correctly labeled or
mislabeled as another category. Precision is the fraction of
examples labeled correctly as belonging to a certain category
relative to the total number of examples labeled as this
category. Recall is the fraction of examples labeled correctly

Architecture hit@1

2 LSTMs, 1024 units 89.43%

2 BiLSTMs, 1024 units 89.13%

Transfer learning, 2 BiLSTMs, 1024 units | 89.68%
2 BiLSTMs, 512 units 86.79%

3 BiLSTMs, 682 units 87.49%

3 BiLSTMs, 512 units 87.74%

3 BiLSTMs, 256 units 87.84%

TABLE I: hir@1 results, 10 categories.

as belonging to a certain category relative to the total number
of examples taken from this category. A larger area under a
precision-recall graph corresponds to better performance.

In our preliminary experiments, we evaluated the perfor-
mance of an architecture with two LSTM/BILSTM layers
trained using 5 categories only. Similar hitr@1 results were
obtained: 96.92% and 96.62% for LSTM and BiLSTM, re-
spectively. A major advantage of BiILSTM is its faster training
convergence; the BILSTM architecture converged in only 100
epochs, compared to more than 200 epochs for the LSTM ar-
chitecture. In our hardware setting, 3.5 hours were required for
the BiLSTM architecture compared to 6.5 hours for the LSTM
architecture. In light of this significant saving, we moved to
using BiLSTM exclusively in our remaining experiments.

Table I lists the results of our different trained architectures
(based on BIiLSTM layers) on 10 categories. It is shown that
all the architectures achieved good results, even when the
number of hidden units in the BiILSTM layers was decreased
from 1024 to 256. In Figure 2, we show hit@1 on the test
set as a function of the training epoch for various settings.
There are two observations that we make. First, transfer
learning generalizes faster and in a smoother manner compared
to full training (i.e., training a network on 10 categories
from scratch). In addition, increasing the number of BiLSTM
layers to 3 while preserving the total number of units (i.e., 2
BiLSTMs with 1024 units compared to 3 BiLSTMs with 682
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Fig. 2: hit@1 evaluated on the test set as a function of the
training epoch.

units) leads to degradation in training performance. This im-
plies a possible performance gain in practice, since increasing
the number of units of a BILSTM layer has a limited effect in
terms of computational resources due to parallelism. However,
increasing the number of layers requires additional sequential
processing that might affect performance considerably.

In Figure 3 and Figure 4, we compare the precision-recall
graphs for the BiLSTM architecture with 1024 units between
full training and transfer learning. The graphs are similar,
demonstrating the power of transfer learning in our context.
In both cases, the most commonly mislabeled classes were
Food and Toy, with about 50 mislabeled examples for Food
(mostly labeled as Cosmetics) and 30 mislabeled examples for
Toy (mostly labeled as Car). Some challenging Food and Toy
examples are shown in Figure 5.

IV. CONCLUSIONS

We compared the performance of RNNs with LSTM and
BiLSTM layers for video classification, and demonstrated
experimentally the faster convergence of the BiLSTM archi-
tecture. We also found that transfer learning offers a good
performance-complexity tradeoff. In the final version of this
paper, we plan to study the effects of reducing the feature
space dimension and to evaluate the performance of additional
network architectures as well as additional transfer learning
schemes.
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Fig. 3: Precision-recall graph, 2 BiLSTMs with 1024 units,
full training.
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Fig. 4: Precision-recall graph, 2 BiLSTMs with 1024 units,
transfer training.

Fig. 5: Toy-Food mislabeling examples. Top: Examples taken
from Toy, Bottom: Examples taken from Food.
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