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ABSTRACT
Transform coding is a widely used image compression tech-
nique, where entropy reduction can be achieved by decom-
posing the image over a dictionary which provides com-
paction. Existing algorithms, such as JPEG and JPEG2000,
utilize fixed dictionaries which are shared by the encoder and
decoder. Recently, works utilizing content-specific dictionar-
ies show promising results by focusing on specific classes of
images and using highly specialized dictionaries. However,
such approaches lose the ability to compress arbitrary images.

In this paper we propose an input-adaptive compression
approach, which encodes each input image over a dictionary
specifically trained for it. The scheme is based on the sparse
dictionary structure, whose compact representation allows
relatively low-cost transmission of the dictionary along with
the compressed data. In this way, the process achieves both
adaptivity and generality. Our results show that although
this method involves transmitting the dictionary, it remains
competitive with the JPEG and JPEG2000 algorithms.

Index Terms— Image compression, sparse representa-
tion, dictionary learning, Sparse K-SVD, JPEG.

1. INTRODUCTION

Compression of natural images relies on the ability to capture
and exploit redundancies found in these images. The most
common compression approach, known as transform coding,
utilizes a dictionary of atomic signals, such as the DCT or
wavelet dictionaries, over which the image is known to be
compressible. The dictionary is typically arranged as a matrix
D = [d1d2 . . . dL] ∈ RN×L, with the columns di constituting
the atoms, and L > N . Given a signal x ∈ RN , compression
is achieved by approximating it as a linear combination of the
atoms,

x ≈ Dγ , (1)

where the representation vector γ is expected to have lower
entropy than the entries of x.

When D is invertible, the representation γ can be com-
puted by inverting D and quantizing the coefficients: γ =
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Q(D−1x). This is the case in the JPEG [1] and JPEG2000 [2]
compression standards, where D is the DCT or wavelet dic-
tionary, respectively.

When D is overcomplete (L ≥ N ), the null space of D
introduces additional degrees of freedom in the choice of
γ, which can be exploited to improve its compressibility.
The representation is typically selected by minimizing some
penalty function C(γ) which estimates its compressibility,
such as the `0 penalty C(γ) = ‖γ‖0 which measures the
number of non-zero values in the representation:

γ̂ = argmin
γ
‖γ‖0 Subject To ‖x− Dγ‖22 ≤ ε2 . (2)

Here, ε is the error target, controlling the distortion of the
compressed signal. This problem is known as the sparse ap-
proximation problem, and though NP-hard in general, can be
approximated by a wide range of techniques [3]. We note that
even though the compressibility of a representation is affected
by additional factors, sparsity provides a simple and relatively
reliable approximation of it.

Transform-based coding schemes generally assume the
dictionary D to be fixed, and built into both the encoder
and decoder. This is the case for the JPEG family of algo-
rithms, for instance, which are based on predetermined fixed
dictionaries and are targeted at general-purpose image com-
pression. Recently, compression schemes aimed at specific
classes of images have been developed, and show substantial
gains by employing a content-specific dictionary, which is
optimized for a specific class of images.

One of the first works to successfully employ a content-
specific approach is [4], where the authors propose an al-
gorithm for facial image compression. The algorithm em-
ploys a pre-processing geometric alignment step, followed by
a sparse approximation of the image patches over a set of pre-
trained dictionaries. The method is shown to achieve a dra-
matic improvement over JPEG2000 for facial imagery owing
to the optimized dictionaries, and demonstrates the potential
of content-aware compression. However, this method is not
easily extendible to other classes of images.

Recently, a method based on iteration-tuned dictionaries
(ITDs) has been proposed in [5]. The scheme uses a single
hierarchical ITD which is pre-trained for a specific class of



images, and used to encode the input image patches. The
authors test their method with facial images, and show that
it can convincingly outperform JPEG and JPEG2000 for this
class of images.

As can be seen, the main drawback of the content-specific
approaches is their loss of generality, limiting them to en-
coding images for which a suitable dictionary has been pre-
shared. In this work we adopt a new, input-adaptive approach,
which aims to restore this generality while preserving adap-
tivity. Our goal is to increase sparsity by encoding the image
over a specifically-trained dictionary adapted for the input im-
age. Achieving this goal is not trivial, as it requires transmit-
ting the dictionary along with the compressed data. To con-
trol the overhead in sending the dictionary, we propose using
a parametric dictionary structure, which can be represented
by relatively few values. Several such dictionaries have been
recently proposed [6].

In this work we focus on the sparse dictionary struc-
ture [7], which is a simple structure able to represent rela-
tively rich dictionaries. Our compression scheme trains the
dictionary specifically for the input image, and encodes it as
part of the compressed stream. In this way, the compression
method can accommodate a wide range of images, since it im-
poses fewer assumptions on their behavior. Our simulations
show that even though our method must encode the dictio-
nary as part of the stream, it consistently outperforms JPEG
compression, and comes close to JPEG2000 in a few cases.
We view these results as significant and encouraging, and
demonstrate the feasibility of the input-adaptive approach,
opening the door to further research.

This paper is organized as follows: In section 2 we review
the sparse dictionary structure, which forms the core of our
algorithm. The compression scheme is described in section 3,
followed by results in section 4. We conclude and discuss
some future directions in section 5.

2. SPARSE DICTIONARIES

The sparse dictionary structure is a parametric dictionary
model recently proposed as a means of bridging the gap be-
tween analytic and trained dictionaries [7]. It is a simple
and effective structure based on sparsity of the atoms over
a known base dictionary. This view suggests that dictionar-
ies describing different images have a common underlying
explanation in the form of a universal base dictionary. This
base dictionary consists of a fixed set of fundamental signals,
from which all observable dictionary atoms are formed.

Formally, the sparse dictionary model represents a dictio-
nary D as the product of a pre-specified base dictionary Φ and
a sparse representation matrix A:

D = ΦA . (3)

Thus, each atom in D is a sparse combination of atoms from
Φ. For simplicity, we assume A has a fixed number of non-

Fig. 1. Left: Overcomplete DCT base dictionary. Right:
Sparse K-SVD dictionary trained over this base dictionary.

zero values per column, so ‖ai‖0 ≤ p for some p. The base
dictionary Φ is a fixed non-adaptive dictionary, such as the
DCT dictionary, and is part of the model. An example sparse
dictionary, trained for 6 × 6 natural image patches using an
overcomplete DCT base dictionary [7], is shown in Fig. 1.

Benefits of this model include adaptability (via modifica-
tion of A), efficiency (assuming Φ has an efficient algorithm),
and compact representation (as only A requires specification).
Training the sparse dictionary is done using the Sparse K-SVD
algorithm [7], which efficiently adapts the matrix A given a
set of examples. We refer the reader to [7] for a description
of the algorithm.

3. ADAPTIVE IMAGE COMPRESSION

The adaptive encoding process is summarized in Fig. 2. The
process begins by partitioning the image into non-overlapping
patches and subtracting the mean (DC) value from each. The
DC values are subsequently quantized, and their running dif-
ferences are entropy coded. The DC-free patches, which con-
tain the bulk of the image information, are used to train a
sparse dictionary using Sparse K-SVD. As the base dictio-
nary, we use the overcomplete DCT, which is known to be
relatively efficient for representing small image patches.

The outcome of the training is a matrix A describing an
image-specific dictionary for representing the image patches.
This matrix undergoes quantization and is then used to en-
code the DC-free patches. We perform sparse coding over
the quantized dictionary Dq = ΦAq to allow inversion of
the process at the decoder. For the sparse coding, we use a
variant of Orthogonal Matching Pursuit (OMP) [8] which we
name Global OMP. The sparse coding step produces a sparse
matrix Γ with the sparse representations of the patches as its
columns, and it is subsequently quantized to form Γq . Finally,
both Aq and Γq are fed to a sparse matrix encoder which gen-
erates the compressed stream of the DC-free content. The
complete compressed stream consists of the encoded DC val-
ues and the two compressed sparse matrices. Note that the
base dictionary itself is fixed in our system and is not trans-
mitted. Decoding the stream is straightforward and includes
reversing the sparse matrix encoding, computing the DC-free
patches X = ΦAqΓq , and restoring the encoded DC values.
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Fig. 2. The encoding scheme.

3.1. Global OMP

Our implementation of the encoder accepts a target PSNR as
the control of the output rate. In the sparse coding stage, this
target can be achieved by sparse coding each image patch in-
dependently, setting the error target in (2) to

ε2 = b · 10
−PSNR

10 · I2max, (4)

where b denotes the number of pixels in a patch, and Imax is
the maximum intensity value. Alternatively, we can lift the
uniform-distortion constraint and allow the error to be dis-
tributed arbitrarily among the patches. This results in a more
flexible sparse coding scheme which potentially achieves
higher sparsity. In this way, we solve a global sparse coding
problem for all image patches simultaneously, given by

Min
Γ
‖Γ‖0 Subject To ‖Y− DqΓ‖2F ≤ ε2g . (5)

Here, Y is a matrix with the image patches as its columns, and
εg is the global error target for the image.

Solving problem (5) is equivalent to sparse coding the
column-stack vector representation of Y over the dictionary
I ⊗ D, which can be solved using OMP. The greedy pro-
cess can be implemented efficiently as it amounts to adding
an atom to a single patch each iteration, and hence all com-
putations are performed locally at the patch level. We name
this process Global OMP, and use it for both the dictionary
training and the sparse coding steps of the scheme.

3.2. Quantization

We quantize the non-zero values in A and Γ using a uniform
quantizer. While their distribution is highly non-uniform, it
is known that using a uniform quantizer followed by entropy
coding generally outperforms a non-uniform quantizer. A
side effect of the quantization of Γ is that the PSNR target
achieved in the sparse coding step is lost. To restore the de-
sired PSNR target, we employ a simple iterative refinement
process, in which coefficients are added to Γ to compensate
for the quality loss. This is done by raising the PSNR target
for the Global OMP by the amount lost due to quantiza-
tion. We then continue the greedy selection process from the
point it terminated until the updated PSNR target is reached.
The resulting coefficients are quantized, and if necessary the

PSNR target is raised again and the process repeats until
reaching the user-specified PSNR target. Since the sparse
coding is continued rather than restarted, the overhead of
these repetitions is small. For more details see [9].

3.3. Sparse Matrix Encoding

Our sparse matrix encoder represents the matrices Aq and Γq

in column-compressed form. It encodes the non-zero coeffi-
cients via entropy coding, and their locations via difference
coding of the row indices followed by entropy coding.

A useful observation is that the order of the columns of
A is a degree of freedom of the representation. Indeed, we
can apply any permutation to the columns of A, along with
the same permutation to the rows of Γ, without altering the
product AΓ. This freedom can be used to improve the com-
pressibility of the row indices in Γ. In this work we order the
columns of A in a descending order of usage, which results
in a concentration of the non-zeros in Γ near the top of the
matrix. Thus, the entropy of the index differences is reduced.

3.4. Entropy Coding

The entropy coding in this work is implemented using an
arithmetic coder. We recall that given a set of symbols, the
arithmetic coder and decoder require the symbol probabil-
ities {pi} as side information. To avoid sending floating-
point numbers, we quantize and transmit the log-probabilities
log2(1/pi). These values represent the optimal codeword
lengths of the symbols, and thus have a relatively small range
which can be uniformly quantized. We have found that us-
ing very few bits (5-6) for the quantized values results in
practically no increase to the code length, while reducing the
overhead of the side information.

4. RESULTS

We have tested the proposed scheme on images from the
CVG-Granada dataset1. Rate-Distortion graphs for eight im-
ages are presented in Fig. 3, and compare our method to JPEG
and JPEG2000. As can be seen, our scheme consistently out-
performs JPEG, and comes close to JPEG2000 in a few cases.

1http://decsai.ugr.es/cvg/dbimagenes/
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Fig. 3. Rate-Distortion graphs of the sparse K-SVD method compared to JPEG and JPEG2000.

We note that the compression process involves the choice of
a few parameters, including patch size, dictionary size, atom
sparsity, and quantization step sizes. Our system implements
a semi-automatic parameter tuning process which dynami-
cally determines these values for the given image, with no
user intervention. For additional details and results see [9].

5. CONCLUSION AND FUTURE DIRECTIONS

This work has presented a new image compression scheme
based on input-adaptive dictionaries. The system is unique in
that it encodes the image over a dictionary specifically trained
for it. This approach, which requires transmission of the dic-
tionary as part of the compressed stream, is made possible
owing to the compact representation of the sparse dictionary.
We have shown that despite the overhead in sending the dic-
tionary, our system consistently outperforms JPEG, which is
a similar patch-based scheme, but utilizes a pre-shared fixed
dictionary. Indeed, while our current implementation does not
reach JPEG2000 performance, our results remain significant
in that they demonstrate the feasibility and potential of the
adaptive approach. Such an approach, as far as the authors
are aware of, has so far been considered impractical.

Many enhancements to the scheme could be introduced.
Most notably, working with several image scales could more
efficiently represent differently-sized features, as well as
eliminate the need to select a patch size for each input indi-
vidually. Another way to achieve such behavior is to apply
the scheme using a wavelet (or other multi-scale) base dictio-
nary, which would also reduce blockiness. Finally, we have
observed that the encoded indices occupy a significant part of
the compressed stream. Thus, discovering or creating regular
patterns in Γ could improve compression efficiency.
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