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Abstract—Developmental disorders are a group of neurolog-
ical conditions originating at childhood, which involve serious
impairments in language, learning, and motor skills. An early
detection of developmental disorders is crucial, as it enables early
intervention (e.g., speech-language and occupational therapy)
that may reduce neurological and functional deficits. In this work,
we develop a tool for an early identification of developmental
disorders in infants based on their cry. We use signal-processing
tools to extract distinguishing cry features (e.g., pitch and
formants), and exploit their correlation with the risk of having
developmental disorders. To estimate this risk, we train a k-
NN machine-learning system. Performance is evaluated against
a database of diagnosed infants, with 89% accuracy in cross-
validation testing.

I. INTRODUCTION

Neuro-developmental disorders are impairments in the
growth and development of the brain or the central neurologic
system. These impairments are characterized in damage to
personal, social and occupational skills. As of 2008, approx-
imately 15% of children in the United States have been
diagnosed with a developmental disorder, compared to only
12.8% in 1997 [1]. It is widely accepted that early intervention
can profoundly improve the quality of life of children at risk
and their families [2]. Many developmental impairments, such
as language and social delays associated with autism, can be
identified as early as 18 months of age. However, over 39% of
children in the United States with Autism Spectrum Disorder
(ASD) are not diagnosed before the age of 6 [3]. This may
result in a delayed intervention, making the prognosis less
likely to improve. To enable an early and effective intervention,
reliable tools for the detection of early signs of developmental
disorders are of utmost importance.

As the production of crying requires the coordination of
different areas of the brain, irregularities in the cry signal
may indicate a neurological insult. For example, the brainstem
controls the laryngeal muscles, the tongue and the lungs
through the vagal complex. These three organs shape the form
of the cry signal, hence their malfunction will produce an
irregular cry signal [4]. Previous researches have shown that
the infant cry signal can be used as a diagnosis tool for health

and developmental status. In [5], major differences were seen
between the cries of healthy infants and infants with asphyxia.
In [6], it was shown that infants at risk for ASD produced a
significantly different cry from healthy infants. Several ap-
proaches have been made at developing an automated system
for characterizing pathologies in infants’ cries. In [7], hidden
Markov models are used for the automatic classification of
various types of infants’ cries. A feed-forward neural network
was used in [8] to classify normal and pathological cries of
deaf infants. A similar approach was proposed in [9] using
general regression neural networks. However, these methods
require complex classifiers and long training time.

In this work, we introduce a cry-based tool for a convenient
and early diagnosis of infants. This tool is aimed at being
simple and cost-effective, and it simply requires samples of
an infant cry. Ultimately, it may serve as a first screening
layer, indicating whether parents should consult an expert.
We first provide a mechanism for the extraction of vocal
features from infant cry signal. We then use a k-NN based
machine learning system to estimate an infant developmental
status. We demonstrate that certain features are remarkably
more indicative of developmental disorders than others. By
an appropriate weighting of the features, good accuracy in
detecting developmental disorders in infants is achieved.

The paper is structured as follows. In Section II, we discuss
the methods used to extract features from the cry signals. Sec-
tion III describes the machine-learning system for infant cry
classification and performance evaluation. Finally, conclusions
are drawn in section IV.

II. METHODS

The cry signal is composed of crying utterances of varying
length, where in between the infant pauses to inhale. As
opposed to speech signals, where through an analysis of voiced
and unvoiced parts words and syllables can be recognized, a
healthy cry signal usually contains a majority of voiced frames.
For improved analysis, we divide the cry acoustic features into
frame and segment features. Frame features are extracted from
15[ms] frames, whereas segment features are extracted from



0.3[s] segments with 50% (0.15[s]) overlap. The time lengths
of the frames and segments are justified later in this section.

A. Databases
Two cry signal databases were used in this paper:
1) Infant cry database, collected by H. Friedman of the

Department of Nursing in the University of Haifa. This
database consists of cry signals of 25 infants aged 34 –
70 gestational weeks. Each infant is classified as either
healthy (no developmental disorder) or impaired (suffers
from a developmental disorder).

2) The Chillanto database [10]. This database consists of
normal cries, cries of deaf infants, asphyxiated infants,
infants suffering from hunger, or infants in pain.

B. Frame features
The following features are extracted from each frame. The

number of samples in a frame is denoted by N .
1) Pitch frequency: The cry sound is elicited due to pe-

riodic vibration of the vocal cords. The frequency of these
vibrations is known as the pitch frequency f0 of the cry. We use
the windowed autocorrelation method [11] for pitch detection.
For improved pitch detection reliability, a time frame with at
least 3 pitch periods is needed. As the typical pitch range in
infants is 200[Hz]–450[Hz], we work with frames of 3/200[s]
= 15[ms], each containing at least 3 pitch periods.

2) Formants: The physical barriers of the oral and nose
cavity constitute a sound box, shaping the spectral shape of
the cry signal. The flow of air through them adds dominant
frequencies, called Formants, corresponding to the resonant
frequencies of the oral and nose cavities. We extract the first
3 formants (F1, F2 and F3) based on the line-spectral pair
representation [12]. Typical formant values for healthy infants
are approximately 1100[Hz] for F1, 3300[Hz] for F2 [4] and
3500[Hz] for F3.

3) Spectral centroid: We perform a fast Fourier transform
(FFT) on each frame to calculate its Spectral Centroid (SC).
Assuming that the frame FFT vector is f , and the correspond-
ing frequencies vector is x, SC is calculated as:

SC[Hz] =
1

N

∑N−1
i=0 |fi| · xi∑N−1

j=0 |fj|
. (1)

SC gives an estimate of the spectral content of the frame.
A typical SC value for healthy infants is approximately
1000[Hz].

4) Short time energy: Again using the frame FFT vector
f , we calculate the short time energy of the frame, E defined
as:

E =
1

N

N−1∑
i=0

|fi|2. (2)

5) Quarterly frequencies: Using the short time energy of
the frame, we find the frequencies above which 25%, 50%
and 75% of the energy resides. Those are dubbed as the first,
second and third quarterly frequencies of the frame energy
spectrum.

6) Mel-Frequency Cepstrum Coefficients (MFCC): To bet-
ter estimate the spectral envelope of the signal, we extract the
MFC coefficients. In the Mel representation, the frequency
axis is scaled to match the Mel logarithmic scale, which
simulates better the way pitch is perceived in human ears.
The Periodogram of each frame is multiplied by a series
of triangular band-pass filters, where each filter matches a
different frequency on the Mel-frequency scale. The logarithm
of the total spectral energy of each filter is computed, and
discrete cosine transform (DCT) is performed to obtain the
MFCC [12].

7) Linear Predictive Coding (LPC) Coefficients: LPC co-
efficients represent the spectral envelope of the signal using a
linear predictive model. They are the coefficients of a forward
linear predictor, obtained by minimizing the prediction error of
the original signal in the least squares sense. LPC coefficients
are mostly used for speech compression and encoding, as
the spectral envelope can be efficiently represented by a
small number of coefficients. As this is a robust method for
speech processing, we found it also plausible for cry signal
phenomena analysis. In this work, the first 3 LPC coefficients
are extracted from each frame.

C. Segmentation and segment length

Due to phenomena occurring in time intervals longer than
frame length, we use features extracted from segments as well.
For example, the pitch contour tracks the pitch (detected in the
frame level) over time, where variations in the pitch contour
through a cry utterance may indicate possible disorders [1].
Thus, it is important to extract features from segments in
addition to frames.

There are several consideration in choosing the segment
length. First, the segment length should be reasonably long
compared to the frame length, to capture time-varying phe-
nomena correctly. Second, to avoid discarding utterance parts
due to segmentation, the segment length should be a divisor
of the typical utterance length. Finally, it is desired that the
segment length is a multiple of the frame length, such that
no frame parts are discarded. By empirically testing several
segment length values, a segment length value of 0.3[s]
resulted in good detection of time-varying phenomena with
a minimal loss of utterance parts due to segmentation. In
particular, for this choice of segment length, each segment
contains 0.3[s]/15[ms] = 20 frames, such that no frame parts
are discarded due to segmentation.

D. Segment features

Previous studies have shown a correlation between certain
pitch patterns (e.g., rapid variations) and possible developmen-
tal disorders in infants [1]. In the rest of this sub-section, we
describe several segment features aimed at identifying such
patterns.

1) Glide: The glide feature is defined as a steep rise or
fall of f0 of at least 600[Hz]/0.1[s] [1]. This justifies choosing
segment length of 0.1[s], as a shorter length would potentially



(a) An example of the glide phenomenon.

(b) An example of the vibrato phenomenon.

Fig. 1. Pitch-related features.

reduce glide detection. The extraction of glide from a cry
segment is done by splitting the utterance into sub-segments
where the pitch contour is constantly rising or constantly
falling. The average slope of the pitch contour, denoted ∆p,
is then calculated from each sub-segment by:

∆p =
|∆f0|

∆t
. (3)

Where ∆f0 is the total change in f0 in the sub-segment, and
∆t is the duration of the sub-segment. If ∆p ≥ 600[Hz]/0.1[s],
the sub-segment is marked as containing a glide. Otherwise,
the sub-segment is not marked as containing a glide. Fig. 1(a)
shows a steep falling glide in the pitch contour, with a fall of
approximately 900[Hz] in 0.1[s].

2) Vibrato: Vibrato is defined as rapid falling and rising of
f0. To detect vibrato in a segment, the sizes of sub-segment
groups containing runs of more than 2 positive/negative pitch

differences (larger than 3Hz) are summed. This sum in then
normalized by a maximal empirical value, and dubbed as the
vibrato intensity of the segment. An example of the vibrato
feature is shown in Fig. 1(b).

3) Cry melody: Cry melody describes the general trend
of the pitch contour; whether it rises, falls or flat. Utterance
containing a majority of one melody might indicate a devel-
opmental disorder [1]. The identification of cry melodies is
done by using derivatives of the pitch contour. A positive
valued derivative indicates a rising trend in the pitch contour,
where a negative valued derivative a falling trend. We begin by
smoothing the segment pitch vector using a moving average.
Local extremum points are then extracted from the smoothed
vector. The difference between the pitch of each two adjacent
extremum points is calculated. A positive difference of over
50[Hz] corresponds to a rising melody, whereas a negative
difference of over 50[Hz] corresponds to a falling melody.
Between these thresholds, the melody is considered as flat.

4) Cry mode: Cry mode describes a continuous temporal
state in a cry segment, where the pitch contour is in either in a
certain range, or cannot be clearly detected (e.g., the signal is
aperiodic). Two modes are extracted in this work: phonation,
where the pitch is up to 750[Hz], and hyperphonation, where
the pitch is above 1000[Hz] [1].

III. CRY CLASSIFICATION SYSTEM

A. Cry classification

The cry signals in the database are diagnosed as belonging
to either ’healthy’ or ’impaired’ infants. Our aim is to train a
machine-learning system, for the detection of developmental
disorders in infants based on features extracted from their cry
signals. We use the k-NN algorithm with k = 5 that provided
the best classification results. In the training phase, each frame
is represented as a 22-dimensional feature vector, based on the
features described in Section II-B and Section II-D. The entire
system architecture is shown in Fig. 2.

For improved classification results, the RELIEFF iterative
feature selection algorithm [13] is used. This algorithm pro-
vides a weight for each feature, measuring its contribution to
the correct classification of training samples. As shown in Fig.
3, the most prominent features are the short time energy of the
frame, the third formant, the vibrato feature and the segment
cry melodies (falling, rising, flat).

B. Performance evaluation

To evaluate the system performance, we tested the system
against both databases using n-fold balanced cross-validation.
To reduce correlation in the training set, the cry signals are
divided into disjoint sets, such that a cry signal does not appear
in both sets. In our tests, the system classified correctly 89%
of the infants. The percentage of cry signals falsely detected
as ’impaired’ while tagged as ’healthy’ is approximately
9%, whereas the percentage of cry signals falsely detected
as ’healthy’ while tagged as ’impaired’ is negligible. For
comparison, when non-overlapping segments are used, the



Fig. 2. Infant cry classification - block scheme.

Fig. 3. Mixed frame and segment features after RELIEFF.

accuracy is 82.7%. This indicates the importance of the use
of overlapping segments, yielding additional segment features
and improving classification performance.

IV. CONCLUSIONS

In this work, we presented a system for the detection of
health disorders in infants, based on their crying. The system
is based on extracting temporal and spectral features out of
a cry signal, followed by a k-NN classifier. Performance
evaluation shows approximately 90% accuracy on a database



of diagnosed infants. The results demonstrate the potential of
cry analysis for an early detection of developmental disorders.
As a possible extension, it is suggested to consider the use of
additional machine-learning algorithms such as support vector
machines (SVM).
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