
Real-time Pedestrian Traffic Light Detection
Roni Ash+, Dolev Ofri+, Jonathan Brokman, Idan Friedman and Yair Moshe

Signal and Image Processing Laboratory (SIPL)

Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology

Technion City, Haifa 32000, Israel

http://sipl.technion.ac.il/

Abstract—Crossing a road is a dangerous activity for

pedestrians and therefore pedestrian crossings and intersections

often include pedestrian-directed traffic lights. These traffic

lights may be accompanied by audio signals to aid the visually

impaired. In many cases, when such an audio signal is not

available, a visually impaired pedestrian cannot cross the road

without help. In this paper, we propose a technique that may

help visually impaired people by detecting pedestrian traffic

lights and their state (walk/don’t walk) from video taken with a

mobile phone camera. The proposed technique consists of two

main modules - an object detector that uses a deep convolutional

network, and a decision module. We investigate two variants for

object detection (Faster R-CNN combined with a KCF tracker,

or Tiny YOLOv2) and compare them. For better robustness, we

exploit the fact that abrupt switching from red to green or vice

versa is unique to traffic lights. The proposed technique aims to

operate on a mobile phone in a client-server architecture. It

proves to be fast and accurate with running time of 6 ms per

frame on a desktop computer with GeForce GTX 1080 GPU and

detection accuracy of more than 99%.

Keywords— pedestrian traffic light detection, object detection,

Faster R-CNN, YOLO object detector, KCF tracker

I. INTRODUCTION

About 217 million people worldwide have moderate to
severe vision impairment and about 36 million are blind [1].
Most visually impaired and blind people experience severe
difficulties in travelling even short distances in public spaces
[2]. They practice travelling on specific routes that they use
often, such as the route from home to a supermarket. However,
crossing a road while walking in a route may prevent the
independent mobility of a person with visual impairment.
Crossing a road or an intersection is a dangerous activity for
pedestrians and therefore crosswalks and intersections often
include pedestrian-directed traffic lights. To make it easier and
safer for visually impaired pedestrians to cross roads, walk
lights can be accompanied by audio signals to indicate when
it is safe to cross. Unfortunately, these accessible pedestrian
signals (APS) are not available in many pedestrian crossings
worldwide. Thus, making the visually impaired dependent on
the assistance of a human guide. There is a great advantage for
a user-side automatic guidance without the need for any
additional infrastructure installed at each crosswalk.

User-side assistive technology to support independent
mobility of visually impaired people has a long history.
However, most existing solutions have not gone beyond the
prototype stage and others are used by relatively small number
of visually impaired people. These solutions usually include
additional aiding equipment, making them less available to
everyone [2]. As mobile phones with an onboard camera are
ubiquitous these days, a solution that does not require any
special hardware and is based on a mobile phone in a computer
vision approach has great potential. Such an approach exploits
the fact that traffic lights have easily noticeable color-coded
illuminated signs.

 Detection of pedestrian traffic lights using a mobile phone
camera faces many challenges [3]:

 Pedestrian traffic lights have different appearances in
different countries and even for different manufactures.

 The distance to a pedestrian traffic light may vary
(typically 4 to 20 meters) and therefore the scale of a traffic
light may vary.

 Traffic lights can be temporarily occluded by vehicles and
other pedestrians.

 There may be several traffic lights in the scene but only
one is relevant.

 Illumination varies depending on the time of the day and
the weather.

 Detection should be robust to different image qualities and
resolutions.

 A video stream captured on a mobile phone is usually not
stabilized.

 Computation power and memory resources are restricted.

With all these challenges in mind, note that in this application
accurate detection is crucial, as false positive detection of
green light wrongly indicates that it is safe to cross the road
and may be fatal to human life.

Traffic light detection is not only beneficial for pedestrians
but is also an important task for driver assistance systems.
With the increasing interest in autonomous driving, many
recent papers deal with vehicle traffic lights detection. To
detect traffic lights, these papers usually suggest to extract
from each image meaningful features according to color or
shape properties, and then to classify according to these
features [4]. Different color spaces are used in the literature to
cluster by color. Color properties are often exploited by using
a set of sequential rules. Other rules are based on the shape,
aspect ratio, texture and size of traffic lights to be detected.
More advanced approaches combine a rule-based approach
with a classifier such as SVM, HMM or AdaBoost, to detect
the structure of a traffic light. Temporal features are usually
not explicitly considered due to computational and memory
constraints. Using a priori knowledge of traffic light position
may also help.

Works concentrating on pedestrian traffic light detection
usually follow the same path as works on vehicle traffic light
detection, exploiting the unique shape and color of a traffic
light in a classical image processing approach. In [3, 5], a
prototype system for detecting pedestrian traffic lights was
implemented on a Nokia N95 mobile phone. Color parameters
are utilized to determine candidate regions, and the parameters
of aspect ratio and possible corresponding size are utilized to
filter out false positives. To improve robustness, candidate
objects are tracked in consecutive video frames. Another
algorithm for detecting pedestrian traffic lights on the Nokia
N95 is presented in [6, 7]. In the first stage, the algorithm uses
smartphone sensors to determine the position of the
smartphone with respect to the horizon and it analyzes only
the upper part of the image. Then, it detects the circular light
and the shape of the pedestrian inside the circle. This

+ These two authors contributed equally to this work.

algorithm also searches for a crosswalk to validate the result.
In [8, 9], besides object detection and recognition, a robust
setup for image capture is proposed. This setup allows to
acquire clearly visible traffic light images regardless of
daylight variability due to time and weather. Two recent
papers use machine learning to detect pedestrian traffic lights.
In [10], a support-vector machine (SVM) classifier is used to
classify histogram-of-gradients (HOG) features. In [11], a
background filter is applied to identify candidate regions of
pedestrian traffic lights and an AdaBoost classifier is used to
detect these traffic lights. The algorithm in both [10] and [11]
runs on a strong desktop computer to achieve real-time
performance.

In spite of the large number of works on vehicle and
pedestrian traffic light detection, these tasks are still
considered active problems for industries and research groups
[4]. In recent years, machine learning techniques using
convolutional neural networks (CNNs) have enabled rapid
and accurate object detection and recognition for use in
various applications. These techniques have a great potential
in improving substantially the performance of pedestrian
traffic light detection systems. The goal of our work is to
exploit state-of-the-art CNN-based object detection to help
people with visual impairment safety and independently cross
roads with pedestrian traffic lights but without APS. A user
will roughly aim his mobile phone at the traffic light and a
dedicated future application will acquire video and stream it
to a cloud server. The proposed technique, running on the
server, will analyze the mobile video stream in real-time and
will detect whether a relevant pedestrian traffic light is green
(‘walk light’) or red (‘don’t walk light’). The application will
generate an audio signal accordingly.

In this paper, we present a novel approach for pedestrian
traffic light detection using deep neural networks. The
approach aims as a smartphone application operating in real-
time in a client-server architecture. The paper is organized as
follows. In Section II we present the dataset we have built for
training and testing. Section III presents two variants of our
proposed solution and compares them. The first using Faster
R-CNN [12] combined with a KCF tracker [13], and the
second using Tiny YOLOv2 [14]. In Section IV we discuss
our results in terms of accuracy and running time. Finally, our
conclusions are given in Section V.

II. DATASET

A. Image Dataset

To train the detector, we built a dataset of pedestrian traffic
light images in their typical environments. A ground truth
bounding box was marked manually for each traffic light.
Traffic lights have a different appearance in different
countries. We focus on the appearance of traffic lights in Israel
at daytime. Since we use a supervised machine learning
approach, it should be straightforward to extend our system to
deal with other pedestrian traffic light appearances by
extending the dataset with such images and retraining the
classifier.

Our dataset contains 950 color images - 450 green ‘walk’
lights and 500 red ‘don’t walk’ lights. Images were captured
according to the following guidelines:

 Taken by a smartphone camera in a standard
configuration.

 High resolution (one million pixels and beyond).

 Taken from the position and viewpoint where pedestrians
have to wait for a ‘walk’ signal. From such viewpoint, the
angle of the relevant pedestrian traffic light is about
frontal.

 The relevant pedestrian traffic light is not occluded.

 Taken during daytime.

 No zoom.

As demonstrated in Fig. 1, following these guidelines
simulates images taken by a future application. Still, the
images have high diversity – pedestrian traffic lights are at
different distances (sizes), illumination can vary, the
luminance of a traffic light lamp can vary, and the scene
structure, including vegetation, people and vehicles, can be
significantly different in different images.

B. Video Dataset

For more robust detection of pedestrian traffic lights, one
can exploit the fact that abrupt switching from red to green or
vice versa is unique to traffic lights. To assess the accuracy of
our technique in detecting this abrupt switching, we built a
dataset of 121 short videos (several seconds long). Each video
captures a single transition or no transition at all - 50 green to
red transitions, 54 red to green transitions, and 17 videos with
no transition. An example of such a traffic light switching is
shown in Fig. 2.

Fig. 1. Example images from our image dataset.

III. PEDESTRAIN TRAFFIC LIGHT DETECETION

We investigate two variants of our algorithm for
pedestrian traffic light detection, both of which share the same
generic scheme, as depicted in Fig. 3. The video is analyzed
frame-by-frame. First, candidates for pedestrian traffic lights
are detected by a generic object detector adapted for localizing
and recognizing pedestrian traffic lights. Next, a decision is
made as to whether it is safe to cross the road. As explained
later in this section in detail, the decision can be based only on
simple spatial and temporal rules or can be more sophisticated,
based also on object tracking. ‘Walk’ indication is given when
a relevant ‘walk’ traffic light is detected with very high
confidence. ‘Don’t walk’ indication is given in one of three
possible cases:

 A relevant ‘don’t walk’ traffic light is detected.

 A relevant ‘walk’ traffic light is detected with a confidence
score that is not high enough.

 No relevant traffic light is detected.

The decision module analyzes the live video stream and
checks for consistent detections across consecutive video
frames. To guarantee safe crossing, if the detection confidence
score of a ‘walk’ traffic light is not high enough, the algorithm
outputs an indication not to cross. In this case, the traffic light
must first turn red and then, when it turns green again, the
algorithm indicates that it is safe to cross. This is the same
approach used in many accessible pedestrian signals. Since we
assume that the user does not change his position very fast and
the rotation angle is small, the decision module can assume
only a small translation between two consecutive frames.

A. First variant: Faster R-CNN with a KCF Tracker

The first variant of our algorithm uses the Faster R-CNN
object detector [12]. Faster R-CNN consists of two main parts
– a Region Proposal Network (RPN) that proposes candidate
regions and a Fast Region-based Convolutional Neural
Network (Fast R-CNN) [15] that performs object detection in
the proposed regions. During training, the following loss
function is minimized:

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)

𝑖

+
𝜆

𝑁𝑟𝑒𝑔
∑𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)

𝑖

(1)

The loss function considers the classification loss 𝐿𝑐𝑙𝑠 and
the bounding box regression loss 𝐿𝑟𝑒𝑔 . Bounding boxes are

predicted relative to a fixed set of reference bounding boxes
called anchors. 𝑝𝑖 is the probability of anchor 𝑖 being an
object. The ground-truth label 𝑝𝑖

∗ is 1 if the anchor is positive,
and is 0 if the anchor is negative. 𝑡𝑖 is a vector representing

the 4 parametrized coordinates of the predicted bounding box,
and 𝑡𝑖

∗ is that of the ground-truth box associated with a
positive anchor. 𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 are two normalizing

parameters and 𝜆 is a balancing parameter. We use a Faster R-
CNN network consisting of five layers - three convolutional
layers and two fully-connected layers. The classifier was pre-
trained on the CIFAR-10 dataset [16], consisting of 60,000
32x32 color images in 10 classes, and transfer learning was
performed to our image dataset with two classes (‘walk’ and
‘don’t walk’ pedestrian traffic light).

An object tracker based on Kernelized Correlation Filters
(KCF) [13] is at the heart of the decision module. KCF is a
state-of-the-art object tracker using a Gaussian kernel and
histogram-of-oriented-gradients (HOG) features. The tracker
is highly efficient due to its use of the ‘kernel trick’ so all
operations are performed in the frequency domain. In each
frame, the object detector’s output bounding boxes are
matched to the tracker’s output bounding boxes using the
intersection-over-union (IoU) similarity measure. For objects
detected by the detector but not by the tracker, the tracker is
updated to start tracking those objects. Objects detected by the
tracker but not by the detector are considered false alarms and
are discarded. The final detection of a pedestrian traffic light
is done for a bounding box detected by Faster R-CNN with a
high confidence score and with an indication of a light switch
(continuous tracking and change of detected object from
‘walk’ signal to ‘don’t walk’ signal or vice versa). In case of
more than one candidate bounding box in a frame, the decision
module selects the largest bounding box due to the assumption
that the relevant traffic light is the closest to the pedestrian.
We found that this strategy gives better results than selecting
the bounding box with the highest confidence score.

B. Second variant: YOLOv2

The second variant of our algorithm uses the YOLO (You
Only Look Once) object detector [14]. YOLO divides the
input image into a grid of 𝑆𝑥𝑆 cells. Each grid cell predicts 𝐵
bounding boxes for which it finds the boundaries (𝑥, 𝑦, 𝑤, ℎ)
and objectness confidence score that quantifies how likely it
is for a bounding box to contain an object of any class. In
addition, each grid cell predicts probabilities 𝑝𝑖(𝑐) of 𝐶
classes. In total, each grid cell has 5𝐵 + 𝐶 channels. A final
score is calculated for each bounding box, taking into account
its objectness score and class scores. Finally, all bounding
boxes with a final score less than a determined threshold are
discarded. The YOLO architecture consists of 24
convolutional layers and two fully connected layers. During
training, YOLO minimizes a loss function that considers three
losses between predictions and ground truth – localization
loss, confidence loss and classification loss:

𝜆𝑐𝑜𝑜𝑟𝑑 ∑∑𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥�̂�)

2 + (𝑦𝑖 − 𝑦�̂�)
2]

𝐵

𝑗=0

𝑆2

𝑖=0

+𝜆𝑐𝑜𝑜𝑟𝑑 ∑∑𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)
2
+ (√ℎ𝑖 −√ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

Object
Detection

Decision

Input Frame

Walk /
Don’t Walk

Fig. 2. Consecutive frames from a video sequence in our video dataset. Note

that traffic light switching is abrupt. In this example, in frame 1 to 3 the light

is green and in frame 4 it turns to red.

Fig. 3. Generic scheme of proposed pedestrian traffic light detection.

+∑∑𝕝𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶�̂�)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+𝜆𝑛𝑜𝑜𝑏𝑗 ∑∑𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − 𝐶�̂�)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+∑𝕝𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

The localization loss, given by the first two terms, is the
error between the predicted and ground-truth bounding box.
The confidence loss, given by the third and fourth terms, is the
objectness of the bounding box. The classification loss is

given by the last term. 𝕝𝑖
𝑜𝑏𝑗

 denotes if object appears in cell 𝑖

and 𝕝𝑖𝑗
𝑜𝑏𝑗

 denotes that the 𝑗th bounding box predictor in cell 𝑖

is ‘responsible’ for that prediction. The loss function only
penalizes classification error if an object is present in that grid
cell. It also only penalizes bounding box coordinate error if
that predictor is ‘responsible’ for the ground truth box. 𝜆𝑐𝑜𝑜𝑟𝑑
and 𝜆𝑛𝑜𝑜𝑏𝑗 are a balancing parameters.

A more recent version of YOLO called YOLOv2 (or
YOLO9000) is proposed in [17]. This version incorporates
several changes compared to YOLO that are reported to
improve results substantially. It contains 19 convolutional
layers and 5 max-pooling layers. YOLOv2 has several
configurations that allow a tradeoff between speed and
detection accuracy. As running in real-time is crucial for our
application, we use the Tiny YOLO configuration that is much
faster and only slightly less accurate than the standard YOLO
model. Tiny YOLOv2 uses only 9 out of the 19 convolutional
layers. The classifier was pre-trained on the PASCAL VOC
2007 and PASCAL VOC 2012 datasets [18], consisting
together of tens of thousands of objects in 20 classes. Transfer
learning was performed to our image dataset with 𝑆 = 13,
𝐵 = 5 , and 𝐶 = 2 (one class for ‘walk’ pedestrian traffic
lights and another class for ‘don’t walk’ pedestrian traffic
lights).

Similarly to the first variant, in case of more than one
candidate bounding box in a frame, the decision module
selects the largest bounding box. However, due to the high
detection accuracy, no object tracker is required here and the
decision module is much simpler than in the first variant. For
better robustness to temporary false detections, the output of
the decision module is the median of the decision in 5
consecutive frames.

IV. RESULTS

In this section, we compare object detectors in terms of
detection accuracy and running time. We also report the
detection accuracy of pedestrian traffic lights in video. Table
1 compares the object detectors described in Section III – the
first variant (based on Faster R-CNN) and the second variant
(based on YOLOv2 or Tiny YOLOv2). The first variant was
implemented in MATLAB under Windows. The second
variant uses the official YOLO implementation in the Darknet
framework under Linux. Results were obtained with cross-
validation with 80% training set, 10% validation set and 10%
test set. As shown in Table 1, both variants detect pedestrian
traffic lights with high accuracy and operate in real-time. The
second variant has higher precision and recall values and
substantially lower running time compared with the first

variant. Tiny YOLOv2 is slightly less accurate than YOLOv2
but has a substantially lower running time.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4. Example object detection results of Faster R-CNN (left column) and
Tiny YOLOv2 (right column). Candidate objects are marked with a

bounding box and a confidence score. Final relevant pedestrian traffic light

detection (based only on one frame without temporal infromation) is given
in the uper left corner of each image.

(2)

Table 1. Comparison of pedestrian traffic light object detectors.

Running times are for a desktop computer with Intel Core i7 CPU and

NVIDIA GeForce GTX 1080 GPU.

‘Walk’ ‘Don’t Walk’ Running

Time
[ms] Precision Recall Precision Recall

Faster
R-CNN

98.8 94.2 98.1 97.6 50

YOLOv2 100 98.31 100 97.14 15.4

Tiny
YOLOv2

100 94.92 100 100 6

Fig. 4 depicts several pedestrian traffic light detection
results for Faster R-CNN and Tiny YOLOv2. Due to its lower
precision and recall, Faster R-CNN outputs substantially more
false candidate bounding boxes compared with Tiny
YOLOv2. Typical false detections are vehicle traffic lights,
people wearing green or red shirts and vehicle wheels. A
disadvantage of Tiny YOLOv2 is that it struggles with
detecting small (distant) objects. This matter is of minor
importance as it is reasonable to assume that the relevant
traffic light is ‘large enough’. Fig. 4g depicts a rare example
of misdetection by both detectors. Faster R-CNN detects both
traffic lights but still selects the furthest one as the relevant
traffic light, while Tiny YOLOv2 does not detect any of the
traffic lights due to difficult illumination conditions.

As explained above, we exploit the fact that abrupt
switching from red to green or vice versa is unique to traffic
lights. We tested for the correct detection of this abrupt
switching with all 121 videos in our video dataset. In the case
of correct pedestrian traffic light detection, both variants of the
proposed algorithm have detected light switching correctly.
The second variant, based on Tiny YOLOv2, performs better
overall in terms of both accuracy and running time. It operates
at 166 frames-per-second and achieves 99.99% success rate in
detecting pedestrian traffic lights. All false detections resulted
in a ‘don’t walk’ indication to make sure that the pedestrian
remains safe.

V. CONCLUSIONS

In this paper, we proposed a solution for pedestrian traffic
light detection using efficient algorithms based on
convolutional neural networks. The proposed solution is
composed of an object detector and a decision module. Our
results show that a solution based on Tiny YOLOv2 object
detector achieves better results than a solution based on Faster
R-CNN object detector. This solution achieves high enough
accuracy and fast enough running time that are suitable for a
mobile application that will help visually impaired pedestrians
cross a road. In the near future, we plan to improve robustness
and add supported scenarios by training and testing the
proposed solution on a larger dataset. We also plan to develop
a complete solution that includes an application that runs on a
mobile phone and is based on a client-server architecture.

VI. ACKNOWLEDGMENT

The authors would like to thank the Technion’s social hub
for partly funding this work. The authors would also like to
thank the staff of Signal and Image Processing Lab. (SIPL) at
the Technion and especially Prof. David Malah, Nimrod Peleg
and Evgeny Slavin, for their continuous assistance and
support.

VII. REFERENCES

[1] "Blindness and Visual Impairment. Fact Sheet," ed: World Health
Organization, 2017.

[2] M. Hersh and M. A. Johnson, Assistive Technology for Visually
Impaired and Blind People: Springer Science & Business Media,
2010.

[3] K. Rothaus, J. Roters, and X. Jiang, "Localization of Pedestrian Lights
on Mobile Devices," in Proceedings: APSIPA ASC: Asia-Pacific
Signal and Information Processing Association, Annual Summit and
Conference, 2009, pp. 398-405.

[4] M. Diaz, P. Cerri, G. Pirlo, M. A. Ferrer, and D. Impedovo, "A Survey
on Traffic Light Detection," in International Conference on Image
Analysis and Processing, 2015, pp. 201-208.

[5] J. Roters, X. Jiang, and K. Rothaus, "Recognition of Traffic Lights in
Live Video Streams on Mobile Devices," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 21, pp. 1497-1511,
2011.

[6] V. Ivanchenko, J. Coughlan, and H. Shen, "Real-time Walk Light
Detection with a Mobile Phone," in International Conference on
Computers for Handicapped Persons, 2010, pp. 229-234.

[7] J. M. Coughlan and H. Shen, "Crosswatch: A System for Providing
Guidance to Visually Impaired Travelers at Traffic Intersection,"
Journal of Assistive Technologies, vol. 7, pp. 131-142, 2013.

[8] S. Mascetti, D. Ahmetovic, A. Gerino, C. Bernareggi, M. Busso, and
A. Rizzi, "Robust Traffic Lights Detection on Mobile Devices for
Pedestrians with Visual Impairment," Computer Vision and Image
Understanding, vol. 148, pp. 123-135, 2016.

[9] S. Mascetti, D. Ahmetovic, A. Gerino, C. Bernareggi, M. Busso, and
A. Rizzi, "Supporting Pedestrians with Visual Impairment During
Road Crossing: A Mobile Application for Traffic Lights Detection,"
in International Conference on Computers Helping People with
Special Needs, 2016, pp. 198-201.

[10] R. Cheng, K. Wang, K. Yang, N. Long, J. Bai, and D. Liu, "Real-time
Pedestrian Crossing Lights Detection Algorithm for the Visually
Impaired," Multimedia Tools and Applications, pp. 1-21, 2017.

[11] X.-H. Wu, R. Hu, and Y.-Q. Bao, "Fast Vision-Based Pedestrian
Traffic Light Detection," in IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR), 2018.

[12] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-
time Object Detection with Region Proposal Networks," in Advances
in Neural Information Processing Systems (NIPS), 2015, pp. 91-99.

[13] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High-speed
Tracking with Kernelized Correlation Filters," IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 37, pp. 583-
596, 2015.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look
Once: Unified, Real-time Object Detection," in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 779-788.

[15] R. Girshick, "Fast R-CNN," in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1440-1448.

[16] A. Krizhevsky and G. Hinton, "Learning Multiple Layers of Features
from Tiny Images," Master’s thesis, Department of Computer
Science, University of Toronto, 2009.

[17] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," in
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 6517-6525.

[18] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, "The PASCAL Visual Object Classes Challenge:
A Retrospective," International Journal of Computer Vision, vol. 111,
pp. 98-136, 2015.

