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Abstract—Crossing a road is a dangerous activity for 

pedestrians and therefore pedestrian crossings and intersections 

often include pedestrian-directed traffic lights. These traffic 

lights may be accompanied by audio signals to aid the visually 

impaired. In many cases, when such an audio signal is not 

available, a visually impaired pedestrian cannot cross the road 

without help. In this paper, we propose a technique that may 

help visually impaired people by detecting pedestrian traffic 

lights and their state (walk/don’t walk) from video taken with a 

mobile phone camera. The proposed technique consists of two 

main modules - an object detector that uses a deep convolutional 

network, and a decision module. We investigate two variants for 

object detection (Faster R-CNN combined with a KCF tracker, 

or Tiny YOLOv2) and compare them. For better robustness, we 

exploit the fact that abrupt switching from red to green or vice 

versa is unique to traffic lights. The proposed technique aims to 

operate on a mobile phone in a client-server architecture. It 

proves to be fast and accurate with running time of 6 ms per 

frame on a desktop computer with GeForce GTX 1080 GPU and 

detection accuracy of more than 99%. 

Keywords— pedestrian traffic light detection, object detection, 

Faster R-CNN, YOLO object detector, KCF tracker 

I. INTRODUCTION 

About 217 million people worldwide have moderate to 
severe vision impairment and about 36 million are blind [1]. 
Most visually impaired and blind people experience severe 
difficulties in travelling even short distances in public spaces 
[2]. They practice travelling on specific routes that they use 
often, such as the route from home to a supermarket. However, 
crossing a road while walking in a route may prevent the 
independent mobility of a person with visual impairment. 
Crossing a road or an intersection is a dangerous activity for 
pedestrians and therefore crosswalks and intersections often 
include pedestrian-directed traffic lights. To make it easier and 
safer for visually impaired pedestrians to cross roads, walk 
lights can be accompanied by audio signals to indicate when 
it is safe to cross. Unfortunately, these accessible pedestrian 
signals (APS) are not available in many pedestrian crossings 
worldwide. Thus, making the visually impaired dependent on 
the assistance of a human guide. There is a great advantage for 
a user-side automatic guidance without the need for any 
additional infrastructure installed at each crosswalk. 

User-side assistive technology to support independent 
mobility of visually impaired people has a long history. 
However, most existing solutions have not gone beyond the 
prototype stage and others are used by relatively small number 
of visually impaired people. These solutions usually include 
additional aiding equipment, making them less available to 
everyone [2]. As mobile phones with an onboard camera are 
ubiquitous these days, a solution that does not require any 
special hardware and is based on a mobile phone in a computer 
vision approach has great potential. Such an approach exploits 
the fact that traffic lights have easily noticeable color-coded 
illuminated signs. 

 Detection of pedestrian traffic lights using a mobile phone 
camera faces many challenges [3]: 

 Pedestrian traffic lights have different appearances in 
different countries and even for different manufactures. 

 The distance to a pedestrian traffic light may vary 
(typically 4 to 20 meters) and therefore the scale of a traffic 
light may vary. 

 Traffic lights can be temporarily occluded by vehicles and 
other pedestrians. 

 There may be several traffic lights in the scene but only 
one is relevant. 

 Illumination varies depending on the time of the day and 
the weather. 

 Detection should be robust to different image qualities and 
resolutions. 

 A video stream captured on a mobile phone is usually not 
stabilized. 

 Computation power and memory resources are restricted. 

With all these challenges in mind, note that in this application 
accurate detection is crucial, as false positive detection of 
green light wrongly indicates that it is safe to cross the road 
and may be fatal to human life. 

Traffic light detection is not only beneficial for pedestrians 
but is also an important task for driver assistance systems. 
With the increasing interest in autonomous driving, many 
recent papers deal with vehicle traffic lights detection. To 
detect traffic lights, these papers usually suggest to extract 
from each image meaningful features according to color or 
shape properties, and then to classify according to these 
features [4]. Different color spaces are used in the literature to 
cluster by color. Color properties are often exploited by using 
a set of sequential rules. Other rules are based on the shape, 
aspect ratio, texture and size of traffic lights to be detected. 
More advanced approaches combine a rule-based approach 
with a classifier such as SVM, HMM or AdaBoost, to detect 
the structure of a traffic light. Temporal features are usually 
not explicitly considered due to computational and memory 
constraints. Using a priori knowledge of traffic light position 
may also help. 

Works concentrating on pedestrian traffic light detection 
usually follow the same path as works on vehicle traffic light 
detection, exploiting the unique shape and color of a traffic 
light in a classical image processing approach. In [3, 5], a  
prototype system for detecting pedestrian traffic lights was 
implemented on a Nokia N95 mobile phone. Color parameters 
are utilized to determine candidate regions, and the parameters 
of aspect ratio and possible corresponding size are utilized to 
filter out false positives. To improve robustness, candidate 
objects are tracked in consecutive video frames. Another 
algorithm for detecting pedestrian traffic lights on the Nokia 
N95 is presented in [6, 7]. In the first stage, the algorithm uses 
smartphone sensors to determine the position of the 
smartphone with respect to the horizon and it analyzes only 
the upper part of the image. Then, it detects the circular light 
and the shape of the pedestrian inside the circle. This 
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algorithm also searches for a crosswalk to validate the result. 
In [8, 9], besides object detection and recognition, a robust 
setup for image capture is proposed. This setup allows to 
acquire clearly visible traffic light images regardless of 
daylight variability due to time and weather. Two recent 
papers use machine learning to detect pedestrian traffic lights. 
In [10], a support-vector machine (SVM) classifier is used to 
classify histogram-of-gradients (HOG) features. In [11], a 
background filter is applied to identify candidate regions of 
pedestrian traffic lights and an AdaBoost classifier is used to 
detect these traffic lights. The algorithm in both [10] and [11] 
runs on a strong desktop computer to achieve real-time 
performance.  

In spite of the large number of works on vehicle and 
pedestrian traffic light detection, these tasks are still 
considered active problems for industries and research groups 
[4]. In recent years, machine learning techniques using 
convolutional neural networks (CNNs) have enabled rapid 
and accurate object detection and recognition for use in 
various applications. These techniques have a great potential 
in improving substantially the performance of pedestrian 
traffic light detection systems. The goal of our work is to 
exploit state-of-the-art CNN-based object detection to help 
people with visual impairment safety and independently cross 
roads with pedestrian traffic lights but without APS. A user 
will roughly aim his mobile phone at the traffic light and a 
dedicated future application will acquire video and stream it 
to a cloud server. The proposed technique, running on the 
server, will analyze the mobile video stream in real-time and 
will detect whether a relevant pedestrian traffic light is green 
(‘walk light’) or red (‘don’t walk light’). The application will 
generate an audio signal accordingly. 

In this paper, we present a novel approach for pedestrian 
traffic light detection using deep neural networks. The 
approach aims as a smartphone application operating in real-
time in a client-server architecture. The paper is organized as 
follows. In Section II we present the dataset we have built for 
training and testing. Section III presents two variants of our 
proposed solution and compares them. The first using Faster 
R-CNN [12] combined with a KCF tracker [13], and the 
second using Tiny YOLOv2 [14]. In Section IV we discuss 
our results in terms of accuracy and running time. Finally, our 
conclusions are given in Section V. 

II. DATASET 

A. Image Dataset 

To train the detector, we built a dataset of pedestrian traffic 
light images in their typical environments. A ground truth 
bounding box was marked manually for each traffic light. 
Traffic lights have a different appearance in different 
countries. We focus on the appearance of traffic lights in Israel 
at daytime. Since we use a supervised machine learning 
approach, it should be straightforward to extend our system to 
deal with other pedestrian traffic light appearances by 
extending the dataset with such images and retraining the 
classifier. 

Our dataset contains 950 color images - 450 green ‘walk’ 
lights and 500 red ‘don’t walk’ lights. Images were captured 
according to the following guidelines: 

 Taken by a smartphone camera in a standard 
configuration. 

 High resolution (one million pixels and beyond). 

 Taken from the position and viewpoint where pedestrians 
have to wait for a ‘walk’ signal. From such viewpoint, the 
angle of the relevant pedestrian traffic light is about 
frontal. 

 The relevant pedestrian traffic light is not occluded. 

 Taken during daytime. 

 No zoom. 

As demonstrated in Fig. 1, following these guidelines 
simulates images taken by a future application.  Still, the 
images have high diversity – pedestrian traffic lights are at 
different distances (sizes), illumination can vary, the 
luminance of a traffic light lamp can vary, and the scene 
structure, including vegetation, people and vehicles, can be 
significantly different in different images. 

B. Video Dataset 

For more robust detection of pedestrian traffic lights, one 
can exploit the fact that abrupt switching from red to green or 
vice versa is unique to traffic lights. To assess the accuracy of 
our technique in detecting this abrupt switching, we built a 
dataset of 121 short videos (several seconds long). Each video 
captures a single transition or no transition at all - 50 green to 
red transitions, 54 red to green transitions, and 17 videos with 
no transition. An example of such a traffic light switching is 
shown in Fig. 2. 

Fig. 1.  Example images from our image dataset. 



III. PEDESTRAIN TRAFFIC LIGHT DETECETION 

We investigate two variants of our algorithm for 
pedestrian traffic light detection, both of which share the same 
generic scheme, as depicted in Fig. 3. The video is analyzed 
frame-by-frame. First, candidates for pedestrian traffic lights 
are detected by a generic object detector adapted for localizing 
and recognizing pedestrian traffic lights. Next, a decision is 
made as to whether it is safe to cross the road. As explained 
later in this section in detail, the decision can be based only on 
simple spatial and temporal rules or can be more sophisticated, 
based also on object tracking. ‘Walk’ indication is given when 
a relevant ‘walk’ traffic light is detected with very high 
confidence. ‘Don’t walk’ indication is given in one of three 
possible cases: 

 A relevant ‘don’t walk’ traffic light is detected. 

 A relevant ‘walk’ traffic light is detected with a confidence 
score that is not high enough. 

 No relevant traffic light is detected. 
 

The decision module analyzes the live video stream and 
checks for consistent detections across consecutive video 
frames. To guarantee safe crossing, if the detection confidence 
score of a ‘walk’ traffic light is not high enough, the algorithm 
outputs an indication not to cross. In this case, the traffic light 
must first turn red and then, when it turns green again, the 
algorithm indicates that it is safe to cross. This is the same 
approach used in many accessible pedestrian signals. Since we 
assume that the user does not change his position very fast and 
the rotation angle is small, the decision module can assume 
only a small translation between two consecutive frames. 

A. First variant: Faster R-CNN with a KCF Tracker 

The first variant of our algorithm uses the Faster R-CNN 
object detector [12]. Faster R-CNN consists of two main parts 
– a Region Proposal Network (RPN) that proposes candidate 
regions and a Fast Region-based Convolutional Neural 
Network (Fast R-CNN) [15] that performs object detection in 
the proposed regions. During training, the following loss 
function is minimized: 
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1
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The loss function considers the classification loss 𝐿𝑐𝑙𝑠 and 
the bounding box regression loss 𝐿𝑟𝑒𝑔 . Bounding boxes are 

predicted relative to a fixed set of reference bounding boxes 
called anchors. 𝑝𝑖  is the probability of anchor 𝑖 being an 
object. The ground-truth label 𝑝𝑖

∗ is 1 if the anchor is positive, 
and is 0 if the anchor is negative. 𝑡𝑖  is a vector representing 

the 4 parametrized coordinates of the predicted bounding box, 
and 𝑡𝑖

∗  is that of the ground-truth box associated with a 
positive anchor. 𝑁𝑐𝑙𝑠  and 𝑁𝑟𝑒𝑔  are two normalizing 

parameters and 𝜆 is a balancing parameter. We use a Faster R-
CNN network consisting of five layers - three convolutional 
layers and two fully-connected layers. The classifier was pre-
trained on the CIFAR-10 dataset [16], consisting of 60,000 
32x32 color images in 10 classes, and transfer learning was 
performed to our image dataset with two classes (‘walk’ and 
‘don’t walk’ pedestrian traffic light).  

An object tracker based on Kernelized Correlation Filters 
(KCF) [13] is at the heart of the decision module. KCF is a 
state-of-the-art object tracker using a Gaussian kernel and 
histogram-of-oriented-gradients (HOG) features. The tracker 
is highly efficient due to its use of the ‘kernel trick’ so all 
operations are performed in the frequency domain. In each 
frame, the object detector’s output bounding boxes are 
matched to the tracker’s output bounding boxes using the 
intersection-over-union (IoU) similarity measure. For objects 
detected by the detector but not by the tracker, the tracker is 
updated to start tracking those objects. Objects detected by the 
tracker but not by the detector are considered false alarms and 
are discarded. The final detection of a pedestrian traffic light 
is done for a bounding box detected by Faster R-CNN with a 
high confidence score and with an indication of a light switch 
(continuous tracking and change of detected object from 
‘walk’ signal to ‘don’t walk’ signal or vice versa). In case of 
more than one candidate bounding box in a frame, the decision 
module selects the largest bounding box due to the assumption 
that the relevant traffic light is the closest to the pedestrian. 
We found that this strategy gives better results than selecting 
the bounding box with the highest confidence score. 

B. Second variant: YOLOv2 

The second variant of our algorithm uses the YOLO (You 
Only Look Once) object detector [14]. YOLO divides the 
input image into a grid of 𝑆𝑥𝑆 cells. Each grid cell predicts 𝐵 
bounding boxes for which it finds the boundaries (𝑥, 𝑦, 𝑤, ℎ) 
and objectness confidence score that quantifies how likely it 
is for a bounding box to contain an object of any class. In 
addition, each grid cell predicts probabilities 𝑝𝑖(𝑐)  of 𝐶 
classes. In total, each grid cell has 5𝐵 + 𝐶 channels. A final 
score is calculated for each bounding box, taking into account 
its objectness score and class scores. Finally, all bounding 
boxes with a final score less than a determined threshold are 
discarded. The YOLO architecture consists of 24 
convolutional layers and two fully connected layers. During 
training, YOLO minimizes a loss function that considers three 
losses between predictions and ground truth – localization 
loss, confidence loss and classification loss: 
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Fig. 2. Consecutive frames from a video sequence in our video dataset. Note 

that traffic light switching is abrupt. In this example, in frame 1 to 3 the light 

is green and in frame 4 it turns to red.  

Fig. 3. Generic scheme of proposed pedestrian traffic light detection. 
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The localization loss, given by the first two terms, is the 
error between the predicted and ground-truth bounding box. 
The confidence loss, given by the third and fourth terms, is the 
objectness of the bounding box. The classification loss is 

given by the last term. 𝕝𝑖
𝑜𝑏𝑗

 denotes if object appears in cell 𝑖 

and 𝕝𝑖𝑗
𝑜𝑏𝑗

 denotes that the 𝑗th bounding box predictor in cell 𝑖 

is ‘responsible’ for that prediction. The loss function only 
penalizes classification error if an object is present in that grid 
cell. It also only penalizes bounding box coordinate error if 
that predictor is ‘responsible’ for the ground truth box. 𝜆𝑐𝑜𝑜𝑟𝑑  
and 𝜆𝑛𝑜𝑜𝑏𝑗 are a balancing parameters. 

A more recent version of YOLO called YOLOv2 (or 
YOLO9000) is proposed in [17]. This version incorporates 
several changes compared to YOLO that are reported to 
improve results substantially. It contains 19 convolutional 
layers and 5 max-pooling layers. YOLOv2 has several 
configurations that allow a tradeoff between speed and 
detection accuracy. As running in real-time is crucial for our 
application, we use the Tiny YOLO configuration that is much 
faster and only slightly less accurate than the standard YOLO 
model. Tiny YOLOv2 uses only 9 out of the 19 convolutional 
layers. The classifier was pre-trained on the PASCAL VOC 
2007 and PASCAL VOC 2012 datasets [18], consisting 
together of  tens of thousands of objects in 20 classes. Transfer 
learning was performed to our image dataset with 𝑆 = 13, 
𝐵 = 5 , and 𝐶 = 2  (one class for ‘walk’ pedestrian traffic 
lights and another class for ‘don’t walk’ pedestrian traffic 
lights).  

Similarly to the first variant, in case of more than one 
candidate bounding box in a frame, the decision module 
selects the largest bounding box. However, due to the high 
detection accuracy, no object tracker is required here and the 
decision module is much simpler than in the first variant. For 
better robustness to temporary false detections, the output of 
the decision module is the median of the decision in 5 
consecutive frames. 

IV. RESULTS 

In this section, we compare object detectors in terms of 
detection accuracy and running time. We also report the 
detection accuracy of pedestrian traffic lights in video. Table 
1 compares the object detectors described in Section III – the 
first variant (based on Faster R-CNN) and the second variant 
(based on YOLOv2 or Tiny YOLOv2). The first variant was 
implemented in MATLAB under Windows. The second 
variant uses the official YOLO implementation in the Darknet 
framework under Linux. Results were obtained with cross-
validation with 80% training set, 10% validation set and 10% 
test set.  As shown in Table 1, both variants detect pedestrian 
traffic lights with high accuracy and operate in real-time. The 
second variant has higher precision and recall values and 
substantially lower running time compared with the first 

variant. Tiny YOLOv2 is slightly less accurate than YOLOv2 
but has a substantially lower running time. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Fig. 4. Example object detection results of Faster R-CNN (left column) and 
Tiny YOLOv2 (right column). Candidate objects are marked with a 

bounding box and a confidence score. Final relevant pedestrian traffic light 

detection (based only on one frame without temporal infromation) is given 
in the uper left corner of each image. 

(2) 



Table 1. Comparison of pedestrian traffic light object detectors. 

Running times are for a desktop computer with Intel Core i7 CPU and 

NVIDIA GeForce GTX 1080 GPU. 

 
‘Walk’ ‘Don’t Walk’ Running 

Time 
[ms] Precision Recall Precision Recall 

Faster 
R-CNN 

98.8 94.2 98.1 97.6 50 

YOLOv2 100 98.31 100 97.14 15.4 

Tiny 
YOLOv2 

100 94.92 100 100 6 

 

Fig. 4 depicts several pedestrian traffic light detection 
results for Faster R-CNN and Tiny YOLOv2.  Due to its lower 
precision and recall, Faster R-CNN outputs substantially more 
false candidate bounding boxes compared with Tiny 
YOLOv2. Typical false detections are vehicle traffic lights, 
people wearing green or red shirts and vehicle wheels. A 
disadvantage of Tiny YOLOv2 is that it struggles with 
detecting small (distant) objects. This matter is of minor 
importance as it is reasonable to assume that the relevant 
traffic light is ‘large enough’. Fig. 4g depicts a rare example 
of misdetection by both detectors. Faster R-CNN detects both 
traffic lights but still selects the furthest one as the relevant 
traffic light, while Tiny YOLOv2 does not detect any of the 
traffic lights due to difficult illumination conditions.  

As explained above, we exploit the fact that abrupt 
switching from red to green or vice versa is unique to traffic 
lights. We tested for the correct detection of this abrupt 
switching with all 121 videos in our video dataset. In the case 
of correct pedestrian traffic light detection, both variants of the 
proposed algorithm have detected light switching correctly. 
The second variant, based on Tiny YOLOv2, performs better 
overall in terms of both accuracy and running time. It operates 
at 166 frames-per-second and achieves 99.99% success rate in 
detecting pedestrian traffic lights. All false detections resulted 
in a ‘don’t walk’ indication to make sure that the pedestrian 
remains safe. 

V. CONCLUSIONS 

In this paper, we proposed a solution for pedestrian traffic 
light detection using efficient algorithms based on 
convolutional neural networks. The proposed solution is 
composed of an object detector and a decision module. Our 
results show that a solution based on Tiny YOLOv2 object 
detector achieves better results than a solution based on Faster 
R-CNN object detector. This solution achieves high enough 
accuracy and fast enough running time that are suitable for a 
mobile application that will help visually impaired pedestrians 
cross a road. In the near future, we plan to improve robustness 
and add supported scenarios by training and testing the 
proposed solution on a larger dataset. We also plan to develop 
a complete solution that includes an application that runs on a 
mobile phone and is based on a client-server architecture.  
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