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Abstract—Modern mobile phones are equipped with an in-
frared photoelectric proximity sensor, most commonly applied
to turn off the touch screen during a phone call to prevent
accidental touches when users’ face/ear is detected in proximity
to the screen. In this work we propose to achieve the sensing
functionality without using a special sensor. Specifically, we use an
already existing speaker and microphones for proximity sensing,
without interfering with their originally intended operation. We
build our method on the observation that the transfer function
from the mobile phone speaker to the microphones varies as a
function of objects located in the vicinity of the mobile phone.

We have prototyped our solution on 2 mobile phones -
Samsung Galaxy A70 and Xiaomi Mi 9, and achieved 99%
accuracy of detection. We demonstrate that our method is robust
to various environments, geometries, fabrics, and performs well
in the presence of noise. We also evaluate the performance of
various implementations, and discuss their trade-offs.

Index Terms—Acoustic Sensing, Mobile phone, Proximity sen-
sor, Smartphone

I. INTRODUCTION

A proximity sensor [1] is able to detect the presence of
nearby objects without physical contact. It is usually imple-
mented by emitting a beam of electromagnetic radiation (e.g.,
infrared), and sensing changes in the returned signal. The
sensed object is referred to as a proximity sensor’s target.
Different target types require different sensors. For example,
a capacitive proximity sensor or a photoelectric sensor are
suitable for a plastic target, while an inductive proximity
sensor only works with a metal target.

Nowadays, a proximity sensor is a standard component of
most smartphones. Figure 1 shows an example of a proximity
sensor in a Samsung smartphone located at the top near the
front-facing camera. The main application of the sensor is to
detect when a user is holding the phone near his/her face
during a call, in order to turn off the display, to avoid an
accidental touch during the call and to reduce the battery
power consumption. Other applications may include saving
power when the phone is in the pocket, or reduction of
radiation exposure by attenuating radio power when the phone
is in close proximity to the body.

In smartphones, proximity sensors are usually implemented
by means of an IR LED and a light detector. However, such
implementation has the following drawbacks: First, the need
for a special sensor, which on top of the added cost and related
circuitry, consumes both additional power and physical space
on the screen, impeding a better screen-to-body ratio. Second,

Light emitter side Light detector side

Fig. 1. An example of a proximity sensor in a Samsung smartphone and
Sharp GP2Y0A21YK optical proximity sensor

improper installation of cases, covers or screen protectors may
interfere with the proximity sensor function. Third, due to IR-
based implementation, the performance of the sensor may vary
over temperature and object color variations (e.g., failure to
detect a close dark object because of the absorbing nature of
the object color). Finally, such a sensor is inherently limited to
detection in the area of the sensor, rather than proximity to the
phone. For example, even partial occlusion by a finger would
be detected as positive, while a large object even touching the
screen below the sensor would not be detected (blind zone).

In this work we propose to utilize the existing speaker
and microphones to implement an acoustic based proximity
detector. We prototype our solution on 2 real mobile phones
– Samsung Galaxy A70 and Xiaomi Mi 9. We show the
robustness of our method to varying environments, geometries,
fabrics, and to a variety of recorded noise signals. Moreover,
we show evidence of a possibility to further extend the
approach to achieve even finer grain sensing, such as, detecting
the type of materials in proximity to the device and distance
measurements.

Our method is based on the observation that the transfer
function from the mobile phone speaker to the microphones
varies as a function of objects located in the vicinity of the
mobile phone [2]. We estimate the transfer functions and
identify the transfer function’s features which indicate an
object proximity.

Such an approach, however, poses several challenges. First,
we want to preserve the original functionality of the speaker
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Fig. 2. Schematic diagram of a mobile phone with 2 microphones and
definition of transfer functions

and microphones during the sensing period. Second, we have
to operate with the given geometry, as well as the location of
the speaker and the microphones. Finally, our detection needs
to be robust to varying environments, materials, and noises. We
address these challenges as follows. We use high frequency
sound as means to estimate the transfer function, or speech
signals as the means to estimate the relative transfer function
(RTF) [3]–[5]. We consider a set of features and apply a feature
selection algorithm to select only the ones that differentiate
robustly between the states. We can use an SVM classifier
[6] as the detector. As an alternative, we show how to train a
convolutional neural network (CNN) directly on the transfer
functions as inputs. The method is generic and modular.

We compare the performance of the different approaches
to TF estimation and classifier implementations. We achieve
accuracy of 99.3%, recall rate of 100%, and precision of
98.5%, with F1-score of 0.99, and an area under ROC curve
of 0.99. Our additional contributions are a labeled dataset with
739 recordings, open-source Matlab/Python implementation of
the algorithmic techniques used and an open-source Android
application.

To the best of our knowledge, we are the first to suggest us-
age of an existing speaker and microphones of a mobile phone
to perform proximity detection. Acoustic-based proximity and
ranging is implemented by dedicated hardware (e.g., sonar).
B. Thiel et al. [7] used an ultrasonic acoustic-based method of
two mobile phones paired by bluetooth to estimate the distance
between them. C. Peng et al. [8] uses an acoustic-based
method for ranging and localization with dedicated hardware,
while [9] uses beacons and unsynchronized ultrasonic sources
to position a mobile phone. The authors of [2], [10]–[12] use
acoustics to estimate the geometry of a room, using dedicated
source signal, speaker, and microphone(s), however limiting
the shape to a convex polyhedral room. [13] used harmonics
produced in sound echoes to detect the material on which
the smartphone was placed. Perhaps closest to our approach
are US patents [14], [15], however, those either control the
location of the loudspeaker and microphones, use dedicated
speaker / microphone for the purpose of detection, or use audio
in the human audible range.

Fig. 3. Overview of proposed proximity detection method. The implemen-
tation of each block marked in red dashes may be done using different
techniques

This paper is organized as follows. In Section II, we
formulate the problem of proximity detection, and describe
our proposed acoustic-based method. In Section III, we present
experimental results to evaluate the performance and robust-
ness of our method to environment, geometries, positioning
and noise. Finally, in Section IV, we discuss future directions
and conclusions.

II. SYSTEM OVERVIEW
The task of a proximity detection sensor is to detect

whether an object is located close to the sensor. Our method
suggests omitting the sensor, by utilizing the existing speaker
and microphones, without compromising their functionality.
A typical mobile phone is usually equipped with a speaker
and two microphones, the locations of which are illustrated
in Figure 2. One microphone is located at the bottom of the
device and the other, which is commonly dedicated for active
noise cancellation on top. We define three transfer functions:
1. TF between the speaker and the main microphone at the
bottom of the phone 2. TF between the speaker and the
microphone at the top of the phone, and 3. Relative transfer
function (RTF) [3] between the microphones. We propose
to estimate the TFs and to construct a classifier using a
supervised machine learning approach. Our method consists
of 3 subsequent stages, as depicted in Figure 3. Each stage
can be implemented using different algorithmic techniques;
the performance of each technique is evaluated in Section III
and the trade-offs are discussed in Section IV. The first stage
of transfer functions identification is described in §II-A. The
second stage of feature extraction is described in §II-B. The
final stage of classification is described in §II-C. A more direct
approach combining the feature extraction and classification,
using a convolutional neural network, is described in §II-D.
In the training phase, the estimated TFs are labeled with an
object in proximity or no objects in proximity, and are used to
train SVM or CNN classifiers. Such trained classifier is used
in the online classification phase to classify new unlabeled TFs
as proximity detected or not-detected.

A. Transfer function identification

We propose two approaches for identification of the TFs. In
the first approach, we estimate the TF using a synthetic input
signal, in which case we estimate TFs 1 and 2. In the second
approach, we estimate the RTF by using speech signals as a
source.

Figure 3 illustrates the case of synthetic input signal x(t);
we use high frequency audio – a band-limited Gaussian white



noise in a frequency range of 15-20 KHz with a Gaussian
envelope of length 1.5 sec, sampled at 44.1 KHz. Such a
signal should not bother human users [2], or interfere with
the speaker and microphone operation. Although the hearing
threshold depends, among others, on age, the playback level
with which the experiments have been performed, show that
the signal lies well below the hearing threshold. We record
the audio from both microphones at a sampling rate of 44.1
KHz, with a 16-bit resolution, apply a high-pass filter on
the recorded signals with a cutoff frequency of 14.5 KHz
to remove noise and irrelevant information. We then cross-
correlate the recorded signals using the input signal to synchro-
nize them. The transmitted sound interacts with the geometry
of the surrounding objects; we model this interaction as a
convolution system, with impulse response function h1(t), and
with additive noise from the environment n1(t). The recorded
signal that we analyze will then be:

y1(t) = x(t) ∗ h1(t) + n1(t)

Our goal is to extract h1(t) from the recorded sound. We use
the least mean square (LMS) algorithm, introduced by [16],
which is a popular method for adaptive system identification.

In the second approach, we define s(t), as a non-stationary
speech source signal, and w1(t) and w2(t) additive noise sig-
nals. We denote the signals received by the main microphone
as

y1(t) = s(t) + w1(t)

and noise canceling microphones as

y2(t) = h(t) ∗ s(t) + w2(t)

This time, our goal is to identify the response h(t). Note
that s(t) is not a clean speech signal but a reverberated
version, s(t) = s(t) ∗ ĥ1(t), where s(t) is the clean speech
signal and ĥ1(t) is the surrounding impulse response of
the main microphone to the speech source. Accordingly,
ĥ2(t) = h(t) ∗ ĥ1(t) is the surrounding impulse response
of the noise cancellation microphone to the speech source,
and h(t) represents the relative impulse response between the
microphones with respect to the speech source. We closely
follow the algorithm in [5] to identify the RTF.

B. Feature extraction and selection

Careful selection of features is crucial when designing
an effective detector. For each transfer function, we seek
features that comprise the essence of information relevant to
classification, robust to conditions and noise, and are efficient
in terms of computational complexity. To find such features,
we have used a large set of features that were previously used
in the literature for tasks of audio processing. The features
we tried in the time domain are: Max, Min, Mean, Median,
Standard Deviation, Root Mean Square, Averaged derivatives,
Skewness, Kurtosis, Interquartile Range, Zero Crossing Rate,
Mean Crossing Rate, Short time energy, max/mean ratio. In the
frequency domain we tried: Mean, Standard deviation, Spectral
flux, Spectral roll-off, Spectral centroid, and Spectral flatness.
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Fig. 4. Feature ranks and weights computed by ReliefF algorithm

Only some of the features described above may be useful
for proximity detection. Feature selection is the process of
selecting a subset of the features by removing redundant
and irrelevant ones. This process reduces the dimensionality
of the dataset, makes the models easier to interpret by re-
searchers, enhances generalization by reducing variance and,
in turn, reduces the computational and storage complexity
of the classification and training time. We selected a subset
of the features by using the ReliefF algorithm [17] to avoid
exhaustive search. The feature ranks and weights computed by
ReliefF on our training dataset are depicted in Figure 4. We can
see in the figure that some features contribute to classification
accuracy while others interfere. We find that using only the
mean and standard deviation of the frequency response is
enough to be able to linearly separate the cases; simplicity
of such an approach at the expense of accuracy might make
it worth considering.

C. SVM classifier

We trained a Support Vector Machine (SVM) [6] classifier.
SVM classifies data by finding the hyperplane, with the largest
margin (maximal width of the slab parallel to the hyperplane
that has no interior data points) between the two classes that
separates all data points of one class from those of the other
class. We consider the standard linear as well as non-linear
Gaussian (RBF) kernels. In all our experiments, the RBF
kernel led to better results, typically by about 10%, compared
to the linear kernel, when trained and tested using the same
cross-validation process.

D. Convolutional Neural Network classifier

To avoid the manual craft of feature extraction and selection,
we attempted to classify the transfer functions using a convo-



TABLE I
SUMMARY OF THE PERFORMANCE OF THE DETECTORS

AUC Recall Precision Accuracy F1
LMS-based
TF identification
synthetic source

SVM 0.97 95.58% 98.18% 97.08% 0.97

CNN 0.91 94.05% 94.05% 93.47% 0.94

RTF-based
speech source

SVM 0.99 100% 98.51% 99.29% 0.99

CNN 0.81 83.33% 81.15% 82.29% 0.82

lutional neural network (CNN). We constructed a CNN with
a typical topology [18]: three convolutional layers followed
by two fully connected layers and a softmax layer with two
outputs. Each convolutional layer has 64 1x5 filters followed
by 50% pooling, ReLU activation, batch normalization, and
20% dropout. The network is trained end-to-end using the
cross-entropy loss function. We limit our model size to having
the number of parameters in the order of magnitude of the
number of training sample points to avoid over-fitting. In the
case of RTF-based approach, due to limited availability of
training data, we initiated the weights of the model with the
previously learned model for TF, as often done in transfer
learning.

III. EVALUATION

We have examined our approach in several setups with two
mobile phones of different make and model. We have collected
recordings of generated high freq white noise played by the
phone, having objects such as human face or body, table,
book, ceramic sink, transparent glass window, sofa and wall
in close proximity (less than 10 cm), and without any objects,
in real environments. Recordings of a person speaking during
the conditions described above were collected as well. For that
purpose we introduce in this work a new dataset of recordings.
Our dataset contains 739 audio records (353 positive, having
objects in proximity, and 386 negative - without objects in
proximity); 480 were recorded by Samsung Galaxy A70 and
259 were recorded by Xiaomi Mi 9. Of the positive recordings,
280 are of high frequency white noise and 73 are of speech. Of
the negative recordings, 320 are of high frequency white noise
and 66 are of speech. Recordings with objects in proximity
have additional labels as distance, and type of material in
proximity. We’ll make our dataset available for download at
the labs’ website.

To evaluate the performance of our techniques, unless stated
otherwise, we used 5-fold cross-validation. We use 60% of the
dataset to train the model, 20% for validation and parameter
tuning and 20% for testing. To evaluate the effect of noise, we
used eight noise types – suburban train noise, crowd of people
(babble), car noise, exhibition hall, restaurant, street, airport
and train-station noise [19], [20], with SNR values ranging
from 0 dB to 20 dB.

Figure 5 shows the receiver operating characteristic curve
for the proposed techniques. Table I summarizes the results
of the performance of the detectors, comparing different algo-
rithmic approaches. We can see that the RTF-based method is
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Fig. 5. Receiver operating characteristic curve for implementation methods

superior in performance to the LMS-based channel estimation.
However, as we show in Figure 6, the performance of the RTF-
based method is affected by noise; thus in the presence of
noise, using high frequency white noise to estimate the TF, is
preferred. While CNN-based method slightly underperformed
the SVM-based method, it still has the following advantages:
1. Not having to manually craft features; 2. An expectation of
substantial performance improvement as a function of avail-
ability of labeled data; 3. The existence of dedicated hardware
accelerators for CNN-based inference. All the above indicates
that the CNN-based method should still be considered as a
viable option.

To evaluate the robustness of the classifier to varying
environments, geometries, and positioning, we constructed
a test set (a subset of the dataset) which contains sam-
ples with previously unseen (in the training phase) mate-
rial/environment/geometries. In all the experiments concluded,
the results were within 2% of the results present in Table I.
This demonstrates the robustness of our method.

Figure 6 shows the AUC as a function of the SNR of the
above-described noise types for the SVM-based classification
with an estimated TF or RTF. While the performance of RTF-
based method deteriorates in the presence of noise, the method
using a synthetic source shows resilience (even at the low SNR
of 5 dB), due to the fact that the evaluated noise types contain
little or no energy above 15 KHz.

To examine the real-life performance of our proposed
method, we developed an Android application which plays
the synthetic high frequency white-noise, records the output
from both microphones and uses MATLAB C code generator
in combination with Android NDK to execute the pre-trained
model directly on the phone. During a crowded project-demo
day at our faculty, 27 tests were conducted and resulted in
100% successful classifications. We’ll make our application
available for download at the labs’ website.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have shown a method for an acoustic-based
detection of objects in proximity to the mobile phone, using
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Fig. 6. Performance of detectors as a function of noise

existing hardware while allowing its original functionality
during the detection, thus obviating the need for a special
sensor. Such an implementation overcomes the drawbacks of
existing IR-based technology, most notably the blind zone, and
false-positive detection due to partial occlusion. It allows for
energy savings, as during a phone call the microphones and
speaker are already being used, so the additional energy con-
sumption comes only from the required computation, which
can be performed on a low power DSP, usually placed on
the audio path for tasks like noise cancellation and speech
coding. Cost savings and the extension of screen-to-body
ratio, can be achieved as well, by exclusion of the dedicated
sensor. Moreover, it is possible to achieve finer grain sensing,
such as ranging, material detection, or controlling the area
of detection, by training additional specific models for the
condition of interest. Our preliminary experimental results,
showing clustering by material type in low-dimensional t-
SNE embedding [21] of the TFs plot, suggest an interesting
future direction into extension of the classifiers for finer grain
acoustic-based sensing of type of materials. Another future
direction is further improvement of the algorithms to allow
sensing in shorter time frames.
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