2016 ICSEE International Conference on the Science of BEtettEngineering

Enhancement Of BCI Classifiers Through Domain
Adaptation

Hadas Benisti, Daniel Furmaf!, Talor Abramovich?, Amir Ivry*2 and Hillel Pratt
* Electrical Engineering Department
fFaculty Of Medicine
Technion, Israel Institute of Technology
Technion City, Haifa 32000, Israel
Email: {hadasbe@tx, dfurman@tx, talor@t2, sivry@t2, hillel@ttechnion.ac.il

Abstract—Clinical Brain-Computer Interface (BCI) systems accumulation of data and understanding has a limited patent
seek to enable paralyzed individuals to operate devices Wit tg productively enhance clinical systems directly.

their brain activity. Non-invasive systems based on eleaten- In this paper, we suggest that one reason for the BCI

cephalographic (EEG) signals are popular since they avoidisks . ., . I . . o .
associated with invasive procedures, but unfortunately EB field’s mablllty_to design robust and rehab!e classifiessa .
signals are inherently noisy, making effective classifierchal- €ommon and inaccurate assumption: the idea that the brain

lenging to develop. Commonly, new classifiers are benchmagkl ~ activity encoding actual movements and imagined movements
on signals from healthy subjects executing physical movemes, s equivalent. While it has been observed that certain jpies
under the assumption that the performance will transfer to of movement-related brain activity are preserved durinthbo

clinical cases where only imagined movements are possibldere, - . L
we show in contrast that classifiers trained on signals assated ~2ctual and imagined movement [11], [12], these findings are

with actual movements perform erratically when applied to Often crudely (and perhaps, conveniently) used as support
signals associated with imagined movements. We suggest thafor the assumption of equivalence which has guided many
this is because the signals lay in different domains. Then,ot methodological inquiries in clinically ineffectual dirgans.
exploit the different statistical distributions, we apply a domain Though partially overlapping, the cortical and subcoitica

adaptation technique, Frustratingly Easy Domain Adaptation ible f tual tand i ined mov
(FEDA), improving classifier performance accuracy by a thid ~SOUIC€S responsible for actual movement and imagined move-

on a discrimination task that simulates the clinical conditon. ment are well-understood by neuroscientists to be distirgjt
[14], [15], and associated scalp-recorded electrophggiol
|. INTRODUCTION signals are likewise distinguishable, through differende

event-related potentials as well as in the frequency domain
The translation of brain activity directly into command-sigwhere the propagation of beta (15-30Hz) and gamma (30-
nals for electronic devices through brain-computer iategt 100Hz) activity varies both in timing and topography [16],
(BCls) [1], [2], [3] can provide substantial improvements t[17], [18].
the quality of life of paralyzed individuals by amelioragin  Despite this understanding however, signals correspgndin
communicative deficits, navigational difficulties, andiliégat- to actual and imagined movement continue to be conflated
ing many other professional and recreational activitiels [4n the BCI literature, with typical research resembling the
[5]. At present, however, there remain several obstacléseéo sequence: collect data from healthy individuals perfogméeal
widespread adoption of BCls for everyday use by those #r imagined movements, create and evaluate a classifier, and
need. then claim, due to data equivalence, that the classifier can
One significant obstacle is the inability to meaningfullyrelp paralyzed individuals. Here we simulate the process of
transfer classifiers, both from one population to another (ftransferring laboratory results to the clinical case défely,
example, healthy individuals to patients), and betweesiees and show that a BCI classifier's performance degrades when
(for example, first day using a BCI to the second day). Despti@ined on brain signals corresponding to actual movements
much effort dedicated to the extraction of stationary feegu (simulating typical, healthy subjects) and tested on brain
[6], [7], [8], and the design of classifiers for these feasuresignals corresponding to imagined movements (simulatieg t
alone, the challenge remains at the forefront, since imted clinical goal, a paralyzed subject). Furthermore, we shaw p
intra- subject signal variability continues to be probléiméor ticularly significant degradation in the accuracy rate gieitg
current algorithmic approaches [9], [10]. Long and labosio to brain signals of subjects who were not included in the
calibration and training stages are thus currently reguioe training set (simulating new subjects). This degradatien i
each new user of a BCI system, as well as at each new sessgansevere that the classifier's accuracy approaches random
and this reflects an emerging bottleneck in the field, as tkelection.
After establishing that the brain activity encoding actual
12 These two authors contributed equally to this work. movements exists in a different statistical domain than the



brain activity encoding imagined movements, in order tdependent upon the experimental condition. In the actual
exploit this difference to strengthen BCI classifiers, wekio condition, the subject physically pressed and released the
to an established technique in the machine-learning tileea appropriate button on the response device using one of four
Domain Adaptation (DA), also known as Transfer Learninfingers, two on each hand, while in the imagined condition the
[19]. DA has previously been successfully employed in th&ubject solely thought about performing the appropriatgefin
BCI field to assist in subject-to-subject classifier tran§2@], flexion. The auditory stimuli in both conditions were idesai,
as well as session-to-session transfer [21], and most tigcemnd delivered with equivalently pseudo-random timing and
a new transfer learning framework has been proposed tlader. All experimental events were marked on the EEG record
addresses both transfer objectives [22]. with sub-millisecond timing resolution.
Here, we contribute to the growing DA-BCI literature by
demonstrating the usefulness of transfer learning withiew
scenario, that in which actual movement data is used to &ain . : .
o o : ; International Inc.) with electrodes embedded according to
classifier which is afterwards adapted to the imagined dnma{ ; : )
. . . the 10/20 and intermediate electrode locations system was
We use imagined movement data to adapt the classifier to L ; .
. . . ed for data acquisition. Each electrode well was filledchwit
the imagined data domain, and hence demonstrate that das

collected from healthy subjects executing real movemen?sOndUCting gel (Electro-Cap International Inc) to improve
y ) 9 f|gnal quality. An additional 9-mm disc electrode was pthce

which is more practical for a variety of reasons, can fez;xsmOP the middle of each subject's chin as a reference, and

zgpt?aet?orgo train a classifier that is applicable to a CIInICgnother clip-electrode on the left earlobe served as thengro

We show that while a naive classifier training protocoghree additional electrodes were used to record the sshject

. ) . . rizontal and vertical eye movements (EOG); two placed
which treats actual and imagined data as equivalent, lead
llaterally near the outer canthus of each eye, and one below

almost random_ accuracy rates in a four—clas; condition 0254% right eye. The cap-mounted and additional electrodes we
when the classifier is tested on unknown subjects, our pezbos

. . . connected to an EEG recording system (MicroMed). Potemtial
approach raises the accuracy to_33%, a value thatis 1.38 t"?r%m all channels were amplified at 0.15-134.4 Hz, digitized
chance accuracy for this task. This improved accuracy nears. . 16-bit A/D converter. and sarﬁ ) '
. . . o , pled at 512 Hz. The

that achieved by highly specialized classifiers that empl% edance of each electrode was maintained below 5 kOhm
much more extensive feature extraction stages while parfor P '
ing related discrimination tasks, such as 1.85 [23], 1.4],[2
and 1.52 [25] chance accuracies reported in other pulicati  4) Data processing:EEG data is vulnerable to numerous
We emphasize that this current paper is meant to exploren@ise sources, and thus, cleaning of EEG data is an essential
new method for improving a classifier's accuracy, and as,sugirerequisite for conducting a proper analysis of brainvagti
simple features were selected for computational efficiehty Cleaning began with segmentation of the continuous EEG into
the future, applying the current approach to more advancepochs, removal of DC bias, and subsequently, second-order
classification schemes may be a fruitful strategy for acghgev infinite impulse response (lIR) Butterworth band-passrfitig
the highest absolute classification accuracy. (0.1-24 Hz, 6dB/octave slopes). Automatic voltagésuV and

Our proposed approach is both immediately applicable sgectral thresholding (0-2Hz at50dB, 20-40Hz at+100-
a strategy for improving an existing classifier's perform@n +25dB) was implemented to guide subsequent visual inspec-
as well as a platform upon which future research progrartisn and removal of trials irreparably affected by movement
can be built, since it suggests that easily acquired datay fr artifacts as well as miscellaneous electrical noise. Rafig
physically-capable subjects, may be used to systematigall manual removal of artifact-contaminated trials, Indepsamd
reliably enhance the performance of BCls in a clinical caseComponent Analysis (ICA) was applied to facilitate removal
of artifact-related components [26]. Evaluation and efiation
of independent components was aided by the ADJUST algo-

1) Subjects: Fifteen (15) right-handed, female and maleithm [27], a processing heuristic that uses spatial angteral
volunteers, 18-30 years old, with normal hearing and motteatures to identify components associated with artifaatsh
function, and without a history of neurological or psychi@mt as eye-movements, electrocardiogram, muscle activity and
disease, participated in the experiment which is describedmains AC 50Hz. For the purposes of this present study,
more depth in [23]. the cleaned data was segmented into 1000ms epochs, with

2) Paradigm: Subjects sat upright in an electricallyOms corresponding to the delivery of auditory cues to move
shielded and acoustically isolated room, holding a custoror imagine movement. Data from scalp electrodes was used
built spherical response device that contained four bsttorexclusively, amounting to a total of 61 channels in each bpoc
During the experiment, auditory stimuli (delivered usifiRyé- Feature extraction was performed by computing the cross-
sentation’ software by Neurobehavioral Systems, Inc) wechannel covariance matrix of each epoch, yielding a total of
used to cue the subject to perform finger flexion and relea3e21 features. The feature matrix was labeled according to
movements. These movements were either actual or imagineahdition (actual or imagined) and finger moved.

3) Data acquisition: A 61-channel EEG cap (Electro-Cap

Il. EXPERIMENTS SETUP



TABLE |
l1l. ACTUAL DOMAIN VS. IMAGINED DOMAIN MEAN ACCURACY RATES[%] FOR CLASSIFIERS TRAINED BY ACTUAL

AND/OR IMAGINED SIGNALS.
In this section we show that signals related to actual and

imagined movements lay in different domains, and predit th _ Testing Data ___

. . . L. Training Data | Actual Imagined
cross-training gnd testing Wlthou_t sensitivity to the precse Actual 30.0L49 | 255126
of these domains damages classifier performance. A common Imagined 26.8+29 | 259+ 238
practice to examine whether two types of signals lay in
different domains is to examine how well they are separated TABLE I
using a binary Classifier In our case. as an initial Step V\MEAN ACCURACY RATE AND STANDARD DEVIATION[%] OBTAINED BY A

A . o .. T ! CLASSIFIER TRAINED USING A NAIVE APPROACI—(USING BOTH DATA

trained a binary classifier to distinguish between the dctod TYPES) AND TESTED ON DATA RELATED TO IMAGINED SIGNALS.
imagined feature vectors, using an available Support Yecto
Machine (SVM) toolkit [28].We used the actual and imagined Training Strategy | Mean Accuracy

feature vectors extracted from all 15 subjects for a 10-fold A Naive Approach 25+3

cross-validation where at each fold 80% of the data was used
for training, 10% was used for parameter tuning and the
remaining 10% for testing. Results show a clear separation IV. DOMAIN ADAPTION (DA)

of actual data and imagined data, as the mean accuracy ra

t . . .
on the test set data was 98.94% using a linear classifierSomaln Adap“"?‘ .(DA)’ also _k_nown_as Transfer Learning,
and 98.8% using an RBF kernel. The high (almost perfeéiza method f_or training a .C'ass'f'ef using one data set from a
classification accuracy rate indicates that actual and iimealg source domaln together with a typically _sm_aller data sanfro
signals lay in two, almost distinct domains. To investigée a target domain for the purpose of classifying samplesadlat

influence of the difference between the actual and imaging?jthe targest domain. B )
domains on the classifier performance, we trained mulgscla D€NOteD® as a probability space of a source domain and

classifiers on data from four types of single finger movemerfts the probability space of a target domain, whbfe;X D',

and evaluated classification performance. In all expertmenM2aning that the probability spaces are distributed aiffdy.

14 subjects participated in the training process while i 1 " DA applications, the amount of target samples availabfe f

subject was used for testing. We examined linear, polynomfgining, M, is typically smaller than the amount of source
and radial basis function (RBF) kernels. In all our experitse S@MPles/V, available for training. The goal of DAis to utilize
the RBF kernel led to higher accuracy rates than the otheds, 41€ Source samples for training a robust classifier, and the
as such, all classification results reported hereafteespond [@"9et samples for adaptation to the target domain.

to results from this kernel. Table | shows the mean accuracy

rates and standard deviations (averaged over all 15 sepjeét. FEDA

for all four possible permutations of training and testing o

actual and imagined data. As predicted, when testing oralactlrJn Fﬁ;ﬁ)ﬁzﬂdz ?e[a)tﬁ ;Ig\],oercl;ttzr:-]sv;hﬁgerie;lisog r;efssl\)tur%?ug—
data, higher accuracy rate is achieved by training on act ‘ P ¥

data than by training on imagined data. Testing on imagini%rsomeF > 0) and the output space W.: {1,..., K}. For
example, in our case of learning a classifier for movements of

h I i i | h . e :
data, however, leads to inconsistent results, as the anctate 4 fingers,K = 4. The adapted classifier is learned using two

is comparable to random selectid25%. Moreover, training tages: auamentation and training. At the augmentati ia
on imagined data does not raise the accuracy rate ab \Rges. aug 9- 9 @es

random selection for testing on either actual or imagindd.da € training sets related to the source and target domains ar

This implies that the imagined data is far less stable th%ﬁ’msmggned to an au.gmented space usingt’ — X', where
. o C R°", defined by:
the actual data, and it cannot be used alone for training a

reasonable classifier. A naive solution for this setup would

be to use both data sets for training. Table. Il presents the B (x) = {(X,X,O) x ~ D¢

mean accuracy rate (and standard deviation) for testing on (x,0,x), x~ Dt

imagined movements obtained by a classifier trained by data

related to actual movements as well as data related to thikerex € X represents the feature vector of a certain data

imagined movements. Still, using this naive approach léadssample andd = (0,0,...,0) € R¥. The first F' elements

accuracy rate which is comparable to random selection.  of ® (x) represent a general domain which captures common
In the next sections we propose a classification scherfg@@tures of the two domains, the following elements rep-

based on a Domain Adaptation (DA) technique called Fruggsent the source domain, and the laselements of® (x)

tratingly Easy Domain Adaptation (FEDA) [29]. Using FEDA represent the target domain. At the training stage, theifiis

we significantly improve the accuracy rate by utilizing adtu is learned using the augmented training sets.

data for training a stable classifier and the imagined data fo During testing, each test sampiteis augmented according

adapting it to the imagined domain. to its domain and then classified using the learned classifier

)



B. BCI Classification Using FEDA between imagined movements of an unknown subject, and

As stated above, actual data is more stable and m&RPW that inconsistent classification results are obtawieeh
easily obtained than imagined data. However, imagined d&f§ classifier is trained on brain signals acquired during
is closer to a real-life setup where potential users suff@ftudl movements. Moreover, exclusively training on dedenf
from some degree of paralysis. In this section, we proposén&agmed movements also leads to inconsistent resultsalue t
BCl-classification scheme based on FEDA which utilizes tH8€ high variability of this domain of signals. To addresshbo
availability and stability of the actual data for trainingabust Shortcomings, we propose here a classification scheme based
classifier, and the available imagined data for adaptatithe ©On @ domain adaptation technique called FEDA. We utilize
imagined data domain. Since our goal is to classify imagindde availability and stability of signals acquired duringual
data, we define the actual and imagined domains as source Bifyements to train a robust classifier, and signals acquired
target domains, respectively. We augment the feature reectduring imagined movements for adapting it to the imagined
and train an adapted classifier as described above. Givest a @&t domain. Since fingers are humans’ primary effectors for

sample, we augment it according to its domain and apply tifgeracting with modern technologies, and EEG is the most
learned classifier. commonly used signal acquisition modality for BCls, we

chose to evaluate this proposed domain adaptation approach
V. FEDA RESULTS using EEG data corresponding to four classes of finger flex-

In this section we present classification results for imadin ions. Compared to the naive approach of training a classifier
movements, obtained by the proposed approach. We follow@dthout adaptation) using both actual and imagined signal
the same protocol as in Sec. Ill of training on 14 subjecttypes, our approach enhances the classifier in the cligicall
and testing on the 15th, for all 15 subjects, and also used tieéevant domain by a third, from 25% to 33%. This initial
same 10-fold cross-validation. Again, we used data relsiedresult suggests that applying domain-adaptation teclesito
actual movements and data related to imagined movementsdata recorded from physically-capable subjects can fatli
training the classifier. Table Il presents the mean acgurameaningful improvements in classifiers developed for chhi
rate and standard deviation obtained by the proposed FEDRWpPOSes.
based classifier. For comparison, it also presents the naive
classifier trained without DA (presented above in Table ), ACKNOWLEDGMENT
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