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Abstract—Clinical Brain-Computer Interface (BCI) systems
seek to enable paralyzed individuals to operate devices with
their brain activity. Non-invasive systems based on electroen-
cephalographic (EEG) signals are popular since they avoid risks
associated with invasive procedures, but unfortunately EEG
signals are inherently noisy, making effective classifierschal-
lenging to develop. Commonly, new classifiers are benchmarked
on signals from healthy subjects executing physical movements,
under the assumption that the performance will transfer to
clinical cases where only imagined movements are possible.Here,
we show in contrast that classifiers trained on signals associated
with actual movements perform erratically when applied to
signals associated with imagined movements. We suggest that
this is because the signals lay in different domains. Then, to
exploit the different statistical distributions, we apply a domain
adaptation technique, Frustratingly Easy Domain Adaptation
(FEDA), improving classifier performance accuracy by a third
on a discrimination task that simulates the clinical condition.

I. I NTRODUCTION

The translation of brain activity directly into command sig-
nals for electronic devices through brain-computer interfaces
(BCIs) [1], [2], [3] can provide substantial improvements to
the quality of life of paralyzed individuals by ameliorating
communicative deficits, navigational difficulties, and facilitat-
ing many other professional and recreational activities [4],
[5]. At present, however, there remain several obstacles tothe
widespread adoption of BCIs for everyday use by those in
need.

One significant obstacle is the inability to meaningfully
transfer classifiers, both from one population to another (for
example, healthy individuals to patients), and between sessions
(for example, first day using a BCI to the second day). Despite
much effort dedicated to the extraction of stationary features
[6], [7], [8], and the design of classifiers for these features
alone, the challenge remains at the forefront, since inter-and
intra- subject signal variability continues to be problematic for
current algorithmic approaches [9], [10]. Long and laborious
calibration and training stages are thus currently required for
each new user of a BCI system, as well as at each new session,
and this reflects an emerging bottleneck in the field, as the
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accumulation of data and understanding has a limited potential
to productively enhance clinical systems directly.

In this paper, we suggest that one reason for the BCI
field’s inability to design robust and reliable classifiers is a
common and inaccurate assumption: the idea that the brain
activity encoding actual movements and imagined movements
is equivalent. While it has been observed that certain principles
of movement-related brain activity are preserved during both
actual and imagined movement [11], [12], these findings are
often crudely (and perhaps, conveniently) used as support
for the assumption of equivalence which has guided many
methodological inquiries in clinically ineffectual directions.
Though partially overlapping, the cortical and subcortical
sources responsible for actual movement and imagined move-
ment are well-understood by neuroscientists to be distinct[13],
[14], [15], and associated scalp-recorded electrophysiology
signals are likewise distinguishable, through differences in
event-related potentials as well as in the frequency domain,
where the propagation of beta (15-30Hz) and gamma (30-
100Hz) activity varies both in timing and topography [16],
[17], [18].

Despite this understanding however, signals corresponding
to actual and imagined movement continue to be conflated
in the BCI literature, with typical research resembling the
sequence: collect data from healthy individuals performing real
or imagined movements, create and evaluate a classifier, and
then claim, due to data equivalence, that the classifier can
help paralyzed individuals. Here we simulate the process of
transferring laboratory results to the clinical case differently,
and show that a BCI classifier’s performance degrades when
trained on brain signals corresponding to actual movements
(simulating typical, healthy subjects) and tested on brain
signals corresponding to imagined movements (simulating the
clinical goal, a paralyzed subject). Furthermore, we show par-
ticularly significant degradation in the accuracy rate pertaining
to brain signals of subjects who were not included in the
training set (simulating new subjects). This degradation is
so severe that the classifier’s accuracy approaches random
selection.

After establishing that the brain activity encoding actual
movements exists in a different statistical domain than the



brain activity encoding imagined movements, in order to
exploit this difference to strengthen BCI classifiers, we look
to an established technique in the machine-learning literature:
Domain Adaptation (DA), also known as Transfer Learning
[19]. DA has previously been successfully employed in the
BCI field to assist in subject-to-subject classifier transfer [20],
as well as session-to-session transfer [21], and most recently
a new transfer learning framework has been proposed that
addresses both transfer objectives [22].

Here, we contribute to the growing DA-BCI literature by
demonstrating the usefulness of transfer learning within anew
scenario, that in which actual movement data is used to traina
classifier which is afterwards adapted to the imagined domain.
We use imagined movement data to adapt the classifier to
the imagined data domain, and hence demonstrate that data
collected from healthy subjects executing real movements,
which is more practical for a variety of reasons, can feasibly
be used to train a classifier that is applicable to a clinical
population.

We show that while a naive classifier training protocol,
which treats actual and imagined data as equivalent, leads to
almost random accuracy rates in a four-class condition ( 25%)
when the classifier is tested on unknown subjects, our proposed
approach raises the accuracy to 33%, a value that is 1.32 times
chance accuracy for this task. This improved accuracy nears
that achieved by highly specialized classifiers that employ
much more extensive feature extraction stages while perform-
ing related discrimination tasks, such as 1.85 [23], 1.71 [24],
and 1.52 [25] chance accuracies reported in other publications.
We emphasize that this current paper is meant to explore a
new method for improving a classifier’s accuracy, and as such,
simple features were selected for computational efficiency. In
the future, applying the current approach to more advanced
classification schemes may be a fruitful strategy for achieving
the highest absolute classification accuracy.

Our proposed approach is both immediately applicable as
a strategy for improving an existing classifier’s performance,
as well as a platform upon which future research programs
can be built, since it suggests that easily acquired data, from
physically-capable subjects, may be used to systematically and
reliably enhance the performance of BCIs in a clinical case.

II. EXPERIMENTSSETUP

1) Subjects: Fifteen (15) right-handed, female and male
volunteers, 18-30 years old, with normal hearing and motor
function, and without a history of neurological or psychiatric
disease, participated in the experiment which is describedin
more depth in [23].

2) Paradigm: Subjects sat upright in an electrically
shielded and acoustically isolated room, holding a custom-
built spherical response device that contained four buttons.
During the experiment, auditory stimuli (delivered using ’Pre-
sentation’ software by Neurobehavioral Systems, Inc) were
used to cue the subject to perform finger flexion and release
movements. These movements were either actual or imagined,

dependent upon the experimental condition. In the actual
condition, the subject physically pressed and released the
appropriate button on the response device using one of four
fingers, two on each hand, while in the imagined condition the
subject solely thought about performing the appropriate finger
flexion. The auditory stimuli in both conditions were identical,
and delivered with equivalently pseudo-random timing and
order. All experimental events were marked on the EEG record
with sub-millisecond timing resolution.

3) Data acquisition:A 61-channel EEG cap (Electro-Cap
International Inc.) with electrodes embedded according to
the 10/20 and intermediate electrode locations system was
used for data acquisition. Each electrode well was filled with
conducting gel (Electro-Cap International Inc) to improve
signal quality. An additional 9-mm disc electrode was placed
on the middle of each subject’s chin as a reference, and
another clip-electrode on the left earlobe served as the ground.
Three additional electrodes were used to record the subjects
horizontal and vertical eye movements (EOG); two placed
bilaterally near the outer canthus of each eye, and one below
the right eye. The cap-mounted and additional electrodes were
connected to an EEG recording system (MicroMed). Potentials
from all channels were amplified at 0.15-134.4 Hz, digitized
with a 16-bit A/D converter, and sampled at 512 Hz. The
impedance of each electrode was maintained below 5 kOhm.

4) Data processing:EEG data is vulnerable to numerous
noise sources, and thus, cleaning of EEG data is an essential
prerequisite for conducting a proper analysis of brain activity.
Cleaning began with segmentation of the continuous EEG into
epochs, removal of DC bias, and subsequently, second-order
infinite impulse response (IIR) Butterworth band-pass filtering
(0.1-24 Hz, 6dB/octave slopes). Automatic voltage±75uV and
spectral thresholding (0-2Hz at±50dB, 20-40Hz at±100-
±25dB) was implemented to guide subsequent visual inspec-
tion and removal of trials irreparably affected by movement
artifacts as well as miscellaneous electrical noise. Following
manual removal of artifact-contaminated trials, Independent
Component Analysis (ICA) was applied to facilitate removal
of artifact-related components [26]. Evaluation and elimination
of independent components was aided by the ADJUST algo-
rithm [27], a processing heuristic that uses spatial and temporal
features to identify components associated with artifactssuch
as eye-movements, electrocardiogram, muscle activity and
mains AC 50Hz. For the purposes of this present study,
the cleaned data was segmented into 1000ms epochs, with
0ms corresponding to the delivery of auditory cues to move
or imagine movement. Data from scalp electrodes was used
exclusively, amounting to a total of 61 channels in each epoch.
Feature extraction was performed by computing the cross-
channel covariance matrix of each epoch, yielding a total of
3721 features. The feature matrix was labeled according to
condition (actual or imagined) and finger moved.



III. ACTUAL DOMAIN VS. IMAGINED DOMAIN

In this section we show that signals related to actual and
imagined movements lay in different domains, and predict that
cross-training and testing without sensitivity to the presence
of these domains damages classifier performance. A common
practice to examine whether two types of signals lay in
different domains is to examine how well they are separated
using a binary classifier. In our case, as an initial step, we
trained a binary classifier to distinguish between the actual and
imagined feature vectors, using an available Support Vector
Machine (SVM) toolkit [28].We used the actual and imagined
feature vectors extracted from all 15 subjects for a 10-fold
cross-validation where at each fold 80% of the data was used
for training, 10% was used for parameter tuning and the
remaining 10% for testing. Results show a clear separation
of actual data and imagined data, as the mean accuracy rate
on the test set data was 98.94% using a linear classifier
and 98.8% using an RBF kernel. The high (almost perfect)
classification accuracy rate indicates that actual and imagined
signals lay in two, almost distinct domains. To investigatethe
influence of the difference between the actual and imagined
domains on the classifier performance, we trained multi-class
classifiers on data from four types of single finger movements
and evaluated classification performance. In all experiments,
14 subjects participated in the training process while the 15th
subject was used for testing. We examined linear, polynomial
and radial basis function (RBF) kernels. In all our experiments,
the RBF kernel led to higher accuracy rates than the others, and
as such, all classification results reported hereafter correspond
to results from this kernel. Table I shows the mean accuracy
rates and standard deviations (averaged over all 15 subjects)
for all four possible permutations of training and testing on
actual and imagined data. As predicted, when testing on actual
data, higher accuracy rate is achieved by training on actual
data than by training on imagined data. Testing on imagined
data, however, leads to inconsistent results, as the accuracy rate
is comparable to random selection:25%. Moreover, training
on imagined data does not raise the accuracy rate above
random selection for testing on either actual or imagined data.
This implies that the imagined data is far less stable than
the actual data, and it cannot be used alone for training a
reasonable classifier. A naive solution for this setup would
be to use both data sets for training. Table. II presents the
mean accuracy rate (and standard deviation) for testing on
imagined movements obtained by a classifier trained by data
related to actual movements as well as data related to the
imagined movements. Still, using this naive approach leadsto
accuracy rate which is comparable to random selection.

In the next sections we propose a classification scheme
based on a Domain Adaptation (DA) technique called Frus-
tratingly Easy Domain Adaptation (FEDA) [29]. Using FEDA,
we significantly improve the accuracy rate by utilizing actual
data for training a stable classifier and the imagined data for
adapting it to the imagined domain.

TABLE I
MEAN ACCURACY RATES [%] FOR CLASSIFIERS TRAINED BY ACTUAL

AND /OR IMAGINED SIGNALS.

Testing Data
Training Data Actual Imagined
Actual 30.0± 4.9 25.5± 2.6

Imagined 26.8± 2.9 25.9± 2.8

TABLE II
MEAN ACCURACY RATE AND STANDARD DEVIATION [%] OBTAINED BY A

CLASSIFIER TRAINED USING A NAIVE APPROACH(USING BOTH DATA

TYPES) AND TESTED ON DATA RELATED TO IMAGINED SIGNALS.

Training Strategy Mean Accuracy
A Naive Approach 25± 3

IV. D OMAIN ADAPTION (DA)

Domain Adaption (DA), also known as Transfer Learning,
is a method for training a classifier using one data set from a
source domain together with a typically smaller data set from
a target domain for the purpose of classifying samples related
to the target domain.

DenoteDs as a probability space of a source domain andDt

as the probability space of a target domain, whereDs 6∼ Dt,
meaning that the probability spaces are distributed differently.
In DA applications, the amount of target samples available for
training, M , is typically smaller than the amount of source
samples,N , available for training. The goal of DA is to utilize
the source samples for training a robust classifier, and the
target samples for adaptation to the target domain.

A. FEDA

FEDA [29] is a DA algorithm which relies on feature aug-
mentation. The feature vector’s space is notated byX ⊆ R

F

(for someF > 0) and the output space byY = {1, ...,K}. For
example, in our case of learning a classifier for movements of
4 fingers,K = 4. The adapted classifier is learned using two
stages: augmentation and training. At the augmentation stage,
the training sets related to the source and target domains are
transformed to an augmented space usingΦ: X → X̃ , where
X̃ ⊆ R

3F , defined by:

Φ
(

x
)

=

{

(x,x,0) x ∼ Ds

(x,0,x) , x ∼ Dt
(1)

wherex ∈ X represents the feature vector of a certain data
sample and0 = (0, 0, . . . , 0) ∈ R

F . The first F elements
of Φ (x) represent a general domain which captures common
features of the two domains, the followingF elements rep-
resent the source domain, and the lastF elements ofΦ (x)
represent the target domain. At the training stage, the classifier
is learned using the augmented training sets.

During testing, each test samplex is augmented according
to its domain and then classified using the learned classifier.



B. BCI Classification Using FEDA

As stated above, actual data is more stable and more
easily obtained than imagined data. However, imagined data
is closer to a real-life setup where potential users suffer
from some degree of paralysis. In this section, we propose a
BCI-classification scheme based on FEDA which utilizes the
availability and stability of the actual data for training arobust
classifier, and the available imagined data for adaptation to the
imagined data domain. Since our goal is to classify imagined
data, we define the actual and imagined domains as source and
target domains, respectively. We augment the feature vectors
and train an adapted classifier as described above. Given a test
sample, we augment it according to its domain and apply the
learned classifier.

V. FEDA RESULTS

In this section we present classification results for imagined
movements, obtained by the proposed approach. We followed
the same protocol as in Sec. III of training on 14 subjects,
and testing on the 15th, for all 15 subjects, and also used the
same 10-fold cross-validation. Again, we used data relatedto
actual movements and data related to imagined movements for
training the classifier. Table III presents the mean accuracy
rate and standard deviation obtained by the proposed FEDA-
based classifier. For comparison, it also presents the naive
classifier trained without DA (presented above in Table II),
using both data sets as if they were equivalent and yielding
the random selection rate. The naive approach leads to an
inconsistent classifier that has a25% accuracy rate, while our
proposed approach of applying FEDA significantly improves
the classification accuracy rate to 33%. This improvement of
8% to the total classification accuracy indicates an enhanced
classifier.

TABLE III
MEAN ACCURACY RATES AND STANDARD DEVIATIONS[%] OBTAINED BY

THE NAIVE CLASSIFIER AND THE PROPOSED APPROACH OF USINGFEDA,
TESTED ON DATA RELATED TO IMAGINED SIGNALS.

Training Strategy Mean Accuracy
A Naive Approach 25± 3

FEDA 33± 9

VI. CONCLUSION

Brain-Computer Interfaces (BCIs) aim to improve the qual-
ity of life for paralyzed individuals by enabling them to control
electronic devices through their thoughts alone. Although
it is well-established in basic neuroscience that actual and
imagined movements correspond to different neural activity
signatures, signals from these action types are still often
treated as equivalent in many BCI research programs and pro-
totype systems. In this paper, our findings reinforce the basic
neuroscience understanding, by showing that signals recorded
while subjects performed actual and imagined movements lay
in different statistical domains. We simulate a real-worldBCI
setup, where the classification objective is to discriminate

between imagined movements of an unknown subject, and
show that inconsistent classification results are obtainedwhen
the classifier is trained on brain signals acquired during
actual movements. Moreover, exclusively training on data from
imagined movements also leads to inconsistent results due to
the high variability of this domain of signals. To address both
shortcomings, we propose here a classification scheme based
on a domain adaptation technique called FEDA. We utilize
the availability and stability of signals acquired during actual
movements to train a robust classifier, and signals acquired
during imagined movements for adapting it to the imagined
data domain. Since fingers are humans’ primary effectors for
interacting with modern technologies, and EEG is the most
commonly used signal acquisition modality for BCIs, we
chose to evaluate this proposed domain adaptation approach
using EEG data corresponding to four classes of finger flex-
ions. Compared to the naive approach of training a classifier
(without adaptation) using both actual and imagined signal
types, our approach enhances the classifier in the clinically-
relevant domain by a third, from 25% to 33%. This initial
result suggests that applying domain-adaptation techniques to
data recorded from physically-capable subjects can facilitate
meaningful improvements in classifiers developed for clinical
purposes.
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