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Abstract—Speaker diarization is a significant part of many
applications in today’s fast growing user-end software and tech-
nologies. In the last decade, speaker diarization has attracted sig-
nificant research effort, however most of the speaker diarization
methods deeply rely on statistical models which become unreliable
in case of short utterances diarization and in noisy conditions.
In this paper, we introduce a speaker diarization system which
is based on the Locally Linear Embedding (LLE). The LLE
enables to extract the inherent structure of the data and thus
provide better clustering. Experimental results show error rates
lower than 10% and improved stability in comparison with a
conventional speaker diarization method.

Keywords—Speaker diarization, speaker clustering, noisy envi-
ronment, LLE.

I. INTRODUCTION

SPEAKER diarization is defined as the task of tagging
different speakers within a given conversation. It is an

integral part of many applications involving speech processing,
such as speech tagging, speaker recognition/verification and
automated transcription. Various methods were developed for
dealing with the speaker diarization problem, many of them
are reviewed in [1], [2].

There are many considerations which are taken into account
when design a speaker diarization algorithm. Variants designed
for online processing will naturally have a shorter running time
than offline applications, though it may be accompanied by
higher miss-detection and false alarm rates. Assumptions about
the received conversation, such as the number of speakers
in the conversation, overlapping speakers, intensity of back-
ground noises and the duration between speaker changes might
also significantly affect the algorithm planning. State-of-the-
art speaker diarization systems are comprised of two main
phases: Speaker change point detection (CPD) and clustering.
A classical CPD algorithm is based on the Bayesian Informa-
tion Criterion (BIC) [3]. This method formulates the speaker
change point detection as a hypothesis testing problem when
it uses the likelihood of two hypothesis: A given time point
is a speaker change point or not. This method has fairly
satisfying results considering misdetection and false alarm
rates [3]. However, this method has significant performance
degradation in case of rapidly speaker change points and noisy
environment.

As for clustering, many speaker diarization algorithms uti-
lize the Bottom-Up (BU) clustering [1]. The BU clustering

is an iterative algorithm in which at each iteration, the closet
clusters are merged and the models of each cluster is updated
until a stopping criterion is met. Since this method is inherently
based on statistical models it may produce incorrect results
in case of merging a segment that does not belong to the
chosen cluster. It decreases the reliability of the models such
that more segments of the wrong speaker can be added to
the wrong cluster. Furthermore, clustering of short segments
(shorter than 3 seconds) becomes difficult since the models
which are obtained by the BU algorithm are not reliable
enough. This phenomena is very likely to happen for quick
speaker changes or false alarms during the CPD and leads to
incorrect clustering process.

In this paper, we propose to represent the speech segments
by a low-dimensional vector based on the Locally Linear
Embedding (LLE) algorithm which is known for its ability to
deal with nonlinear problems in high-dimensional space [4]–
[6]. LLE works successfully in situations where the data in the
high dimension lies on a well-constructed complex manifold.
Since speech can be represented well in a low dimensional
space [7], it is reasonable to represent the speech segments
in that way, which facilitates better exploration, visualization
and clustering of the data. LLE has the ability to preserve
the neighboring relations of points in the high-dimensional
space when assembling them to the low-dimensional space.
This is the key for its success in our usage, as opposed to
linear algorithms such as PCA, which are relevant for a linear
and convex manifold- not the case of speech data.

After projecting the data to the low-dimension space, each
segment is represented as a point (a low-dimensional vector),
and a classical clustering algorithm such as k-means can be
applied. Due to the lack of correlation between points, this
method tolerates mistakes, and one segment clustering mistake
would not affect the other segments, unlike BU algorithm
where one mistake can lead to a failure in the whole process.
As we tested the LLE clustering we deduced that it manages
to deal with false alarms in the CPD very well, yet miss-
detections cause higher error percentages in the final result.
The miss-detection rate of the CPD algorithm had to be
reduced in order for us to use it. Our solution is an iterative
version of the BIC CPD algorithm, which provides a lower
miss-detection rate.
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II. PROBLEM FORMULATION

The goal of speaker diarization algorithm is tagging a
human conversation to its sources, i.e., answering the question
”Who spoke when?”. A successful diarization algorithm will
produce correct tagging: Segmentation and Clustering. Our
problem assumptions are: background noise (recorded by a
simple phone as so passing through a quality defecting filter),
manually noised recordings and clean speech recordings as
the baseline results quality check. In addition, we assume
no overlapping speakers at any part of the conversation. The
proposed algorithm is comprised of two main phases: Speaker
change point detecting and clustering based on LLE algorithm.
The conversations we deal with in this paper are both synthetic
and original, they include fast speaker changes and are both
short and long (from 1 minute up to 10 minutes), under the
assumption of no overlapping.

III. PROPOSED ALGORITHM

The baseline diarization system consists of three main
stages: Speech detection, speaker change point detection and
speaker clustering. The baseline system is based on the tradi-
tional approach of speaker segmentation which uses the BIC
technique followed by agglomerative speaker clustering. In this
Section, we briefly discuss each of these stages.

A. Change Point Detection
A common speaker change point detector is the BIC CPD

algorithm, it decides on speaker change point existence or
absence by a BIC decision rule. More specifically, let H1

and H0 be the hypothesis of speaker change point absence
or presence at time tj , respectively. Let L0 and L1 be the
likelihoods of the observations given hypothesis H0 and H1,
respectively, as follows:

L0 =

Nx∑
i=1

logP (xi|θz) +
Ny∑
i=1

logP (yi|θz) (1)

L1 =

Nx∑
i=1

logP (xi|θx) +
Ny∑
i=1

logP (yi|θy) (2)

where Nx and Ny are the total number of feature vectors of
segments X and Y, respectively. θx, θy , θz are the models
parameters of the probability density functions (PDF) which
represent the segments X, Y and Z, respectively. The BIC
dissimilarity is estimated by:

S = L1 − L0 − P
λ

2
logNz (3)

where λ is a penalty factor which depends on logNz . An
existence of speaker change point at tj is decided if S > 0
and vice versa. For further discussion see [8].

Basing on shown results, the miss-detection rate, i.e., the
amount of real change points missed by the basic CPD
algorithm is approximately 10%-20%. Although this rate is
considered quite low for many speaker analysis usages, for

diarization purpose it might be high. The clustering algorithm
uses the change point vector as a starting point. False speaker
change points (false-alarms) are recognized well by it and
then dismissed, but its performance degrades significantly in
case of miss-detections. In this paper we introduce a new
method for speaker change point detection which aims to
reduce dramatically the number miss-detections. To explain the
change done to the baseline CPD algorithm we will view it as
follows: instead of deciding whether there is a change point
between two segments or not, we set a change point between
every p samples and then review them one after the other and
decide whether it is a real change point or a not. The ones that
are suspected as false change points are removed. The miss-
detections occur since not all the correct change points get a
high enough value of d to be recognized by the algorithm, but
all of them do have a d value larger than most of the false
change points. This means we find most of the false change
points but in the process discharge also some of the real ones
(around 20%-30% miss-detection and false alarm rates).

In order to deal with miss-detections, we dismiss change
points with greater caution- since the most negative d values
always belong to false change points, we delete the most
negative d valued change point in a certain iteration of the
original algorithm, then update the change points vector and
repeat with the new version of the vector for another iteration.
This process continues until the most negative d value achieved
is above a certain threshold. When setting the threshold value
the following tradeoff comes into consideration: decreasing the
rate of false-alarms while keeping miss-detection rate as close
to zero as possible. This approach has the inequality feature we
required between the miss-detections and false alarms, since
only one point (or few points) is deleted from the change point
vector in each iteration, and so the chance for deleting the
real points decreases and miss-detection rate drops drastically.
Furthermore, the algorithm updates the change point vector
from one iteration to the next and by that extending some
of the segments and makes their MFCC gaussian model
stronger and by that increasing the chance of enlarging them
in the following iterations by deleting false change points
neighboring the larger segment.

B. Clustering

In the proposed algorithm, we utilize the LLE algorithm
which is a dimensional reduction algorithm and known for its
ability to deal with nonlinear problems in high dimensional
space. It transforms the high-dimensional data set to a low-
dimensional space. LLE thrives in cases where the data set
lays in a manifold with a complex structure. The algorithm
discovers the global internal coordinates of the manifold and
preserves the neighborhood relations between the points while
transforming them to low dimensional space. The data which
is being processed by LLE after the change point locations
are achieved, is indeed placed on a high-dim manifold, as
explained in the following paragraph. Assuming the CPD
algorithm produces n change-points which induce n + 1
segments. Each segment contains samples of speech from a
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single person, as described in the CPD part. In order to rep-
resent those segments we utilize the Gaussian Mixture Model
(GMM) method. Thanks to the fact that short segments might
introduce unreliable models, we perform mean adaptation by
using the Universal Background Model (UBM) [9]. Choosing
a UBM with 32 Gaussian lead to 32× 19-dimensional vector
that represents each segment features. UBM provides a good
starting point for GMM modeling. When trying to use default
GMM algorithms with a random starting point, segments
of 3 seconds will not consist of enough data in order to
create an accurate model for them, and will only build 1 − 2
Gaussian components describing them. With UBM we ensure
the starting point is related to the MFCC feature space and
even short segments are decently modeled.
The last process is concatenating those 32 GMM means
components into a high-dimensional vector which also called
a supervector [10]. By repeating this process for all of the
segments, n + 1 points in 608-dimensional space are created
representing the whole signal.

Thanks to the fact that speech can be well represented in
a low dimensional space [7], utilizing dimensionality reed-
ucation algorithm is a reasonable choice. In this paper we
use the LLE algorihtm which fits the task of dimension
reduction for human speech data due to the fact that points
(which represent segments) from the same speaker, will be
scattered in a shape with a complex manifold. LLE projects the
data to lower dimension based on neighborhood-preserving,
which means neighboring points on the high-dim space would
remain neighbors in the low-dim space. The neighbors of
a point belong, most likely, to the same speaker and the
loss of the data in the projection is minimal. In addition,
the LLE are based on minimization of reconstruction error,
assuming each data point is reconstructed by its neighbors,
i.e., taking into consideration also the globally structure of
the nonlinear manifolds (think globally, fit locally [4]). The
transformation to a lower dimension allows to cluster the points
using straightforward clustering methods, such as k-means.

IV. PERFORMANCE EVALUATION

We divide the performance evaluation of our algorithm
into two parts: Performance evaluation of the iterative change
point detection algorithm and performance evaluation of the
proposed clustering method based on LLE. The results of LLE
are of course dependent upon the quality of CPD results, and
the subject will be discussed afterwards. The algorithms were
tested on concatenated recordings from FESTVOX database
[11] and on simple recordings done by a cellular phone mi-
crophone and an 8 kHz recording application. The recordings
of both kinds were as general as possible, containing differ-
ent languages, accents, both male/female speakers, different
conversations lengths and different speaker change point rates
ranging from 2−3 seconds to 30 seconds, which turned to have
the most critical influence on the quality of results. FESTVOX
recordings were clean 16 kHz recordings, while our recordings
had background noises and significant phone filter added to
them, which naturally decreased their SNR.

A. Iterative CPD Performance Evaluation

The first phase in many speech processing methods is
removing the silent parts of the conversation, since it does not
consist an informative data. In this work, we utilized a conven-
tional Voice Activity Detection (VAD) algorithm proposed by
Sohn et al. [12]. The Iterative CPD was researched under two
tested parameters: Number of change points dismissed at each
iteration (n) and the value of algorithm stopping threshold. The
value of n did not change drastically, varying in the range of
1-3, mostly being 1 since it is the only option that potentially
could achieve perfect result of no miss-detection and no false
alarms. The main reason of increasing the parameter n is in
order to drop the running time of the algorithm. The threshold
value is much harder to define. Testing provided the following
values: For recordings consists of only long segments (about
30 seconds each) the value of d was very high, more than 1000,
but for short segments (2− 3 seconds), the value of d was in
the range 50 − 100. These numbers are purely experimental,
but agree with the way d is calculated, where its value gets
larger as the segment gets longer.

We will divide the iterative CPD result into four groups:
Segments which are longer than 10 seconds, segments which
are shorter than 10 seconds crossing with slow changes or
fast changes respectively. The reason for this division is that
segment length seems to be the only factor affecting the results
for CPD. Different languages, accents, age and gender do not
change the results. We examine the algorithm under two types
of files, the “FESTVOX” which is a public database of clean
recordings, and “RECORDED” which are some home-made
recordings made for testing the system. Results for CPD will
include miss-detection (MD) and false alarm (FA) percentages
averaged on the whole data type.

TABLE I: Iterative Change Point Detection Performance.

Database Changes Rate MD [%] FA [%]
FESTVOX slow 0 19.9
Recorded slow 1.6 18.7

FESTVOX fast 2.35 17.75
Recorded fast 0 34.6

Considering the “Recorded” group results, out of 32 differ-
ent tests, only 2 miss-detections occurred, both on the same
recording and both were easily restored when changing the
threshold d. False change points percentage varied between
each recording, most were dismissible with a wide range of
d values, yet included in result statistics. “FESTVOX” testing
showed a similar behavior when miss-detection rate dropped to
negligible percentile and FA rate remained around 20%. Note
that 87% of the “FESTVOX” slow recordings were perfectly
segmented by the algorithm, yet other test with different n
and d parameters produced FAs and were included in the
results. The fast changing recordings included segments under
5 seconds long, still with MD/FA rates up to par.
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B. Clustering Performance Evaluation
The next phase of performance evaluation is investigating

the clustering performance while using the LLE. We assumed
the segmentation phase was provided by the proposed CPD
algorithm. The parameter that was changed during LLE testing
is the number of chosen neighbors which is required by the
LLE algorithm. As expected, increasing speaker change points
required higher number of neighbors. Similarly to the CPD
result section, this section will be divided into the four groups
mentioned earlier. Each clustering result uses the correspond-
ing result of CPD, including provided miss-detections and false
alarms. Result quality was calculated by the Average Cluster
Purity method [13]:

TABLE II: Clustering by Locally Linear Embedding Performance.

Database Changes Rate ACP [%]
FESTVOX slow 4.21
Recorded slow 7.865

FESTVOX fast 13.09
Recorded fast 14.94

Considering the “Recorded” recordings results, 9 of 16 slow
changes tests were perfectly clustered, while the fast changes
recordings provided only 4 perfect clusters out of 16 tests.
Conversation length was a major factor when dealing with fast
changes. A short conversation (1 minute length) with changes
faster than 10 seconds provided a much higher ACP error than
the average conversation, due to the dull UBM and segments.
Short recordings also harmed the slow change points, but for
a different reason: The LLE works well when the feature
space is well structured by a lot of data, but when dealing
with a short recording and long segments, 5 − 6 segments is
a common sight, thereby LLE tends to produce higher ACP
error rates. “FESTVOX” testing also showed similar behavior,
for recordings longer than 1.5 minutes the diarization process
mostly produced 0% ACP error regardless of segment length
(with exceptions only for fast speaker changes).

Considering the correlation between LLE performance and
the quality of CPD result, we reinforced the claim that LLE
dismisses false alarms well: Testing LLE once with a perfect
CPD results and once with a considerable FA percentage the
result mostly experienced only a small deterioration. Some
fast change recording were even clustered better with false
alarms in CPD product, than without them, probably due to
the division of ill modeled segments which were partly tagged
correctly instead of the whole segment being tagged wrongly.

V. CONCLUSION

We have proposed a new speaker diarization system based
on Locally Linear Embedding of the speaker data onto a low
dimensional manifold. The results show good performance on
both professional and amateur everyday recordings, providing
perfect results throughout when dealing with speaker changes
above 10 seconds. The remarkable results were those for fast
speaker changes, where only few errors accrued, keeping a

high ACP. LLE worked well regardless of speaker languages,
accents, gender and age did not affect the algorithm’s perfor-
mance, where many other speaker diarization methods fail. The
iterative CPD produced the exact result it was designed for -
few to none miss-detections, and some false-alarms. According
to the threshold of d, the result could be accompanied by a
larger rate of false alarms. Although, as mentioned, the LLE di-
mension reduction and clustering using UBM dealt with them
successfully. Another side effect added was a longer running
time - due to the iterative nature of the algorithm, compared
to the original single-run based algorithm, the running time
was extended to the point where it is not possible to use it for
online change point detection but only off-line, which was its
purpose in the first place.
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