
Implementations of H.264/AVC Baseline Decoder
on Different Digital Signal Processors

Yair Moshe and Nimrod Peleg
Signal and Image Processing Laboratory (SIPL)

Department of Electrical Engineering, Technion – Israel Institute of Technology
Technion City, Haifa, 32000, Israel

E-mails: yair@siglab.technion.ac.il, nimrod@siglab.technion.ac.il

Abstract - H.264/AVC is the newest video coding standard developed by the joint effort of ITU-T VCEG and
ISO/IEC MPEG. This standard achieves a significant improvement in coding efficiency relative to former
standards at the cost of increased complexity, thus gaining a lot of attention by industry, but creating a big
challenge for efficient hardware and software implementations. In this paper three implementations of an
H.264/AVC baseline decoder using different leading high-end Digitals Signal Processors are described. The
implementation has been done, using the JVT reference software, by undergraduate seniors under the
supervision of the authors, in the course of one year. This study is beneficial in several aspects. First, the
complexity of an H.264/AVC decoder is measured and analyzed using “real world” hardware and software.
Second, the difficulties that programmers could face when implementing an H.264/AVC decoder scheme are
examined. And lastly, different Digital Signal Processors are examined under a very demanding algorithm.

Keywords – H.264, MPEG-4 AVC, video coding, Digital Signal Processor implementation

1. INTRODUCTION

 H.264/MPEG-4 AVC [1] is the latest
international video coding standard. VLSI
technology has advanced significantly since the
development of previous standards (e.g. MPEG1/2,
H.261/3), resulting in a significant reduction in the
implementation cost of some coding tools that were
excluded from those standards. H.264/AVC includes
some of these tools as well as a variety of
innovations. Hence, its complexity is higher,
especially on the encoder side. Even on the decoder
side, its complexity is estimated to be two to three
times higher than an H.263 decoder, for the same
bitrate [5]. DSPs (Digital Signal Processors) are
specialized microprocessors designed to efficiently
perform digital signal processing algorithms. They
are efficient in terms of size, power consumption
and price. In addition, DSPs offer great flexibility
since they can be easily programmed for different
applications. This cost-efficiency makes DSP
programming an important and challenging subject.
Therefore, it is useful to examine H.264/AVC
performance on various DSP platforms.
 Several studies examined H.264/AVC decoder
performance on a GPP (General Purpose Processor).
Fig. 1 shows a time breakdown of a non-optimized
decoder as reported in [4]-[7]. These profiling
results were all measured for GPPs with different
implementations, test sequences, and coding
parameters. In spite of this fact, examining Fig. 1 is
interesting, in the sense of getting a rough estimate
of the expected results using a specific
configuration, and acknowledging the fact that great

Fig. 1. Time breakdown of an H.264/AVC decoder
on General Purpose Processors as reported in [4]-[7]

variability in running time is possible depending on
different parameters.
 In [5] a way is given to compute a lower time-
complexity bound of an H.264/AVC decoder for a
given hardware. This lower bound provides an
insight on the decoder complexity, but could be two
to six times lower than experimental results, even for
a highly optimized decoder. Therefore, it is much
more practical to estimate H.264/AVC time-
complexity by establishing "real life" experimental
benchmarks on specific hardware platforms.
 This paper describes a comparative work that
examines H.264/AVC decoder performance on three
different DSPs. This work has been performed in our
lab by three senior undergraduate student groups,
under the supervision of the authors. A baseline
profile version (after removing some irrelevant
code) of the reference software from JVT is used
[3]. The purpose of this paper is to examine the
special difficulties that programmers could face
when using an H.264/AVC reference software
decoder for DSP implementation, and suggest

optional solutions. Moreover, it enables a
comparison between three different modern DSP
architectures.
 It should be noted that the work has been
performed during the students’ studies and so is
limited in time and scope. This affected the amount
of optimizations performed on the code but does not
prevent us from gaining some important insights.
 The paper is organized as follows. Section 2
gives a brief overview of the H.264/AVC video
coding standard. Section 3 discusses modern DSPs
and briefly describes the three DSPs under
examination. Results, as well as some insights
gained during the work, are given in section 4.
Finally, section 5 concludes our work.

2. H.264/AVC OVERVIEW

 An overview of H.264/AVC and its development
stages can be found in [2], as well as in other
sources. In this section, the main innovations of
H.264/AVC in comparison to previous standards,
which affect its complexity, are briefly described.
• Transform and quantization: Instead of the
traditional 8x8 DCT, which is a real transform and
hence needs real number arithmetic, H.264/AVC
uses an integer approximation to the DCT with a
smaller block size of 4x4 pixels. In addition, no
quantization tables are needed and quantization is
done according to a logarithmically-controlled
quantization parameter.
• Inter multi-frame prediction: In previous video
coding standards, motion compensation was
performed using 16x16 macroblocks only.
H.264/AVC allows also the use of smaller block
sizes – 16x8, 8x16, 8x8, 4x8, 8x4 and 4x4. In
addition, motion compensation is done in ¼-pixel
accuracy and can be based on up to five reference
frames.
• Intra prediction: Performed in the spatial domain,
by referring to neighboring pixels of previously-
coded blocks that are to the left and/or above the
block to be predicted. Two block sizes for intra
prediction are supported – 4x4 with nine prediction
modes, and 16x16 with four prediction modes.
• Deblocking filter: A well known problem of block-
based coding is the production of visible block
artifacts due to block edge discontinuities, especially
at low bit rates. H.264/AVC defines an adaptive in-
loop deblocking filter which reduces blockiness
while retaining the sharpness of the edges in the
scene.
 All aforementioned changes affect both the
encoder and decoder’s complexity. Except for the
new transform and quantization scheme that lower
the complexity, all changes raise the time and space
complexity. Other new features are not mentioned
here because this paper deals with the baseline
profile only.

3. DSP OVERVIEW

 Since DSPs are tailored for executing signal
processing algorithms with very limited resources,
their internal architecture is different from the one
found in GPPs. Some basic distinctions are the use
of fixed-point arithmetic instead of floating-point
arithmetic and the use of a flavor of Harvard
architecture instead of Von Neumann architecture.
Other characteristics of DSP architectures are, e.g.,
specialized multiply-accumulate units and zero-
overhead loops. Recently, DSP architectures have
undergone fundamental changes so different
architectures are available.
 For this study, three leading high-end DSPs with
different architectures have been chosen:
TMS320DM642 from Texas Instruments, MSC8101
StarCore from Freescale (formerly Motorola SPS)
and ADSP-BF533 Blackfin from Analog Devices.
All three DSPs are targeted towards low cost real-
time video codec implementation as one of their
main markets. The StarCore is also highly targeted
to communication applications.
 Table 1 shows some properties of these three
DSPs. In this table, BDTI benchmark is a speed
benchmark on a relative linear scale interpolated
from the BDTImark2000 results given in [8]1. More
information about the different processors could be
found in the relevant company websites.

Table 1. DSPs under examination

 There are many factors that one has to take into
account when examining different DSPs. For
example: performance (e.g., speed, memory
signature size), cost, size, power consumption, ease
of development and integration. In this paper we are
by no means trying to compare all these factors or to
recommend a specific DSP. The only aspects that
will be considered from now on are performance in
terms of speed, and the ease of development.

4. IMPLEMENTATIONS AND RESULS

 Adapting the decoder to the different DSPs
consisted of two phases. The first phase involved
making the code work on the DSP and replacing file

1 The results given in [8] are for the same processors used in this
study but with different clock speeds, so the results were scaled
accordingly.

 DM642 StarCore Blackfin
Num. Rep. Fixed Pt. Fixed Pt. Fixed Pt.
Data Width 8/16 bits 16 bits 16 bits
Instr. Width 32 bits 16 bits 16/32 bits
Clock Speed 600 MHz 300 MHz 600 MHz
Intern. Mem. 288 KB 512 KB 148 KB
BDTI Bench. 5480 2700 3350

access by external memory access, while the second
phase involved profiling and optimizing the code.
 The baseline profile decoder used takes
approximately 13,000 lines of code. Even though
modern development environments for DSPs are
able to compile ANSI C code, adapting such a long
and complex code to such an environment is not an
easy task. Things usually break down because of
limited resources and because of incompatibilities
and instabilities in the DSP development
environment.
 In this paragraph we’ll give two examples (out of
many) of bugs that showed up only on specific DSP
compilers. A hard to trace bug was that nesting of
loops for more than four levels resulted in incorrect
code. Another hard to trace compiler bug, which
caused the code to break, happened while changing a
loop counter inside a loop, in addition to changing it
in the loop header. In order to resolve these bugs,
appropriate workarounds were applied.
 Another problem encountered is the very long
time it takes to profile the code on different DSPs.
This might take days or weeks even for short image
sequences, so we’ve collected as much profiling data
as was feasible in the students’ limited time-table.
QCIF (176x144) and CIF (352x288) Carphone,
Forman and Vectra sequences were used with a
frame rate of 30 frames/sec. Only the first frame in
each sequence was an I-frame and the rest (usually
few dozens of frames) were P-frames.
 Profiling results of the non-optimized code
showed for all DSPs that memory access is very
inefficient and takes a large portion of the total
running time. For example, on the StarCore,
memory initialization, using the ANSI C routine
malloc(), took 50% of the decoder’s time. The
profiling results for other DSPs were not very
different. These results are explained by the fact that
the reference code is very inefficient and by the fact
that the use of up to five previous reference frames
for motion prediction in H.264/AVC incurs large
memory requirements.
 With this profiling in mind, some code-wide
optimizations were performed. The highest compiler
optimization level was used and memory
initialization and access were greatly optimized by,
e.g., changing dynamic memory allocations to static
ones, removing unnecessary duplications of
intermediate results to temporary memory buffers,
avoiding unnecessary memory zeroing, and using
the DSP’s DMA (Direct Memory Access) controller.
These code-wide optimizations had great impact on
the performance. For example, the DM642 decoder
ran 29% faster after changing most of the dynamic
memory allocations to static ones. On the same
code, moving from the lowest compiler optimization
level to a higher one incurred additional speedup of
38%.
 A second phase of optimizations involved local
optimizations. An example of such an optimization

is for the decoder’s inverse transform function. The
function that performs an inverse transform on a
given block made 16 accesses to the block pixels.
Moving the block from the slow external memory to
the faster internal memory and making some
rearrangement in the function’s code resulted in a
speedup of 80% for this function on the DM642.
 Another example of local optimization is in the
code that checks whether motion vectors point
outside frame boundaries. In the non-optimized
code, every pixel is examined whether it is inside or
outside of the frame boundaries. This was replaced
by checking if the block is out of the frame
boundaries and only if so, making the check for each
specific pixel. This optimization, although quite
simple, gave a significant speed improvement,
especially for the StarCore implementation since this
DSP has no branch prediction, and hence its
performance is sensitive to conditional statements.
 Fig. 2 shows the time distribution among
different parts of the DM642 decoder for the non-
optimized and optimized codes. The parts of the
decoder that were optimized more extensively take a
smaller percentage of the total time in the optimized
code, compared to the non-optimized code. In both
cases, image interpolation (reconstruction of the
image based on motion compensation and intra
prediction) takes most of the time and takes a larger
time share than in all benchmark scores described in
[4]-[7]. This is explained by the fact that DSPs have
smaller amount of fast internal memory comparing
to GPPs and therefore are very sensitive to the non-
sequential memory access performed by image
interpolation.

Fig. 2. Time breakdown of H.264/AVC non-
optimized and optimized decoder on DM642 DSP.

 Table 2 summarizes the decoder time breakdown
for the non-optimized and the optimized code after
both code-wide and local optimizations. The results
are given in QCIF frames/sec.
 Even though the BDTI benchmark showed quite
different performance for the different DSPs, Table
2 indicates that all three of them had a similar
decoding speed for the non-optimized code. For the
optimized code, the performance is very
optimization-specific but better performance was
achieved on the DM642 than for the StarCore. This
is because the DM642 was easier to use, so better

optimizations were possible for the same amount of
work.

Table 2. Decoder performce on different DSPs2.
Results are given in QCIF frames/sec.

 Looking for more optimizations, two main
inefficiencies were detected in the optimized code:
1. Memory access is still inefficient. It does not
exploit the hardware to its limits and causes many
memory stalls while accessing the slow external
memory. 2. The JVT code is very inefficient and this
inefficiency is not concentrated in few major
bottlenecks but is distributed all over the code.
 In addition to the profiling results in Table 2, a
theoretical simulation was performed for the
StarCore decoder. This simulation calculated the
performance while neglecting external memory
stalls. The result was 58.7 QCIF frames/sec. This
simulation shows the theoretical limit of optimizing
external memory access with the current code on
this hardware.

5. CONCLUSION

 In this study, three pairs of senior undergraduate
students have implemented an H.264/AVC decoder
on different high-end DSPs, using a baseline version
of the JVT reference code. A comparison of the
three implementations showed similar performance
for a non-optimized version of the code. On all
DSPs, the first-to-handle bottlenecks were the same.
In addition, second-to-handle optimizations were
located based on the specific hardware architecture
of every DSP. Ease of use was best for the DM642,
so it was possible to achieve better results with this
DSP.
 The optimized code is still far from real-time
performance. This is partly due to the students’
limited time for optimizing the code, and is mainly
due to the fact that the reference code is very
inefficient and has not been designed with a
constrained system in mind. It seems like a realistic
implementation should start from scratch, or from a
much more efficient code, since the reference code
had almost been squeezed to its limits in this study.
 Currently, a similar work is performed in our lab
for an H.264/AVC encoder. Until now, similar
memory and other inefficiencies to the ones in the
decoder were detected, so the same code-wide
optimizations and some local optimizations are

2 No profiling results for the Blackfin optimized decoder were
available at the time of writing this paper.

being performed. The profiling results indicate that
motion estimation and mode decision take most of
the encoder’s time (55% of the total encoder time for
one platform). The maximum possible frame rate is
currently two orders of magnitude slower than for
the decoder. However, profiling results show that a
large speedup could be achieved by using sub-
optimal motion estimation and rate-control
algorithms and by other algorithmic improvements.
Future work in this direction is currently performed
in our lab as well as by others, and is expected to
improve the encoder’s time performance
substantially.

ACKNOWLEDGEMENT

 The authors would like to thank the students who
invested time and effort in implementing the
H.264/AVC codec on various DSPs - Boaz
Ackerman and Nir Weingarten, David Katz and
Gilad Raichshtain, Roman Baer and Tomer Cohen.
 The authors would also like to thank the head of
the lab, Prof. David Malah, for his support and
valuable comments.

REFERENCES

[1] "Advanced Video Coding for Generic Audio-
 visual Services," ITU-T Rec. H.264 and
 ISO/IEC 14496-10 AVC, 2003.
[2] G. J. Sullivan, T. Wiegand, "Video Compression
 – From Concepts to the H.264/AVC Standard,”
 Proc. of IEEE, Dec. 2004.
[3] Joint Model ver. 7.2 (H.264/AVC reference
 software). Available via
 http://bs.hhi.de/~suehring/tml/
[4] V. Lappalainen, A. Hallapuro, T. D. Hämäläinen,
 "Complexity of Optimized H.26L Video
 Decoder Implementation," IEEE Trans. Circ.
 and Syst. for Video Technol., vol. 13, pp.
 717-725, July 2003.
[5] M. Horowitz, A. Joch, F. Kossentini, "H.264/
 AVC Basline Profile Decoder Complexity
 Analysis," IEEE Trans. Circ. and Syst. Video
 Technol., vol. 13, pp. 704-716, July 2003.
[6] X. Zhou, E. Q. Li, Y. K. Chen, “Implementation
 of H.264 Decoder on General-Purpose
 Processors with Media Instructions,” SPIE Conf.
 on Image and Video Comm. and Process., vol.
 5022, pp. 224-235, May 2003.
[7] T.T. Shih, C.L. Yang, Y.S. Tung, "Workload
 Characterization of the H.264/AVC Decoder,"
 Proc. 5th IEEE Pacific-Rim Conf. Multimedia,
 Japan, November 2004, pp. 957-966.
[8] Berkeley Design Technology, Inc. (BDTI):
 http://www.bdti.com/

 DM642 StarCore Blackfin
Non-optimized 2.1 1.9 1.9
Optimized 9 7.1 -

