
Fast H.264 Picture in Picture (PIP) Transcoder with
B-slices and Direct Mode Support

Yan Michalevsky #, Tamar Shoham ∗

Electrical Engineering Department, Technion, Israel Institute of Technology
Technion Campus, Haifa 32000, Israel

ymcrcat@gmail.com
∗ tshoham3@gmail.com

Abstract—H.264, the modern standard for video coding, has
become increasingly popular in recent years, and offers solutions
for many applications requiring video compression. Some of
these applications require insertion of content into an already
compressed video. This operation incurs high computational cost
if a naive approach of full re-encoding is taken. Previous efforts
in this field targeted the Baseline Profile of the H.264 standard.
The Main Profile, that offers very efficient encoding modes using
B-slices and Spatial Direct encoding, has not been addressed.
We present Guided Encoding - a novel solution for efficient
Picture-in-Picture embedding using the coding parameters of the
original compressed bit stream. We also present an algorithm for
handling Spatial Direct mode encoding to prevent propagation of
errors caused by the embedding of new content into the original
sequence. We reduce the computational time by an average
factor of five in comparison to performing full re-encoding while
preserving the video quality.

I. INTRODUCTION

Video compression research gained momentum over the last
decade, resulting in numerous practical applications. These
applications are of high commercial value for various media
industries, converged audio-video communication, mobile ser-
vices and many more. H.264, also known as MPEG-4 Part
10 or AVC, is a joint standardization effort by ITU and the
ISO MPEG for video compression. Having been designed
for a wide range of scenarios and different applications it
is of high complexity, and incurs high computational costs.
Our aim is to support insertion of content, such as a static
channel logo, an advertisement, sign language simultaneous
translation, or any other video sequence inside the original
video. The approach of simply decoding the video, insertion
of the desired content into each picture and re-encoding the
resulting sequence again will be referred to as the naive
approach. It provides good video quality and reasonable bit-
rate, but is very time-consuming.

Previous works on content insertion focus on different
aspects of performance: bitrate, runtime and quality. An early
article by Chang and Messerschmitt [1] discusses compositing
of motion compensated video and proposes a method of video
composition in the pixel domain. In [2] they offer a method
of composition in the transform domain. An application to
real MPEG-1 bitstreams is proposed in [3]. These algorithms
require perfect alignment of the inserted content with the
8x8 block grid. In an article by Roma and Sousa [4], an
algorithm for transform domain transcoding is proposed. It

overcomes some of the limitations in previous works and aims
to provide a better re-estimation of the motion vectors that
results in a more compact residual. While working in the
transform domain is beneficial for MPEG-2 and other classic
coders, in the case of H.264 the transform calculation itself
is negligible, and most of the coding complexity stems from
choosing the optimal mode for encoding each macroblock.
In [5], Li et. al. present a transcoding scheme, based on
partial re-encoding (PRET) of macroblocks affected by content
insertion, with optimization of motion vector re-estimation. In
[6], they present PIP transcoding with slice groups and PIP
transcoding using an auxiliary bitstream containing the content
to be inserted into the background sequence.

We propose a method of Guided Encoding. The basic
underlying concept is reusing the encoding decisions from
the original video for the areas of the pictures that are not
affected by the inserted content. Previous works on content
insertion for H.264 ([5], [6]) addressed only the Baseline
Profile of the H.264 standard, and therefore only supported
I and P slices. The standard De Facto for high-quality video
in the entertainment industry as well as in other applications of
H.264 is the Main Profile. One of its most important features
are B slices, that significantly increase compression efficiency
by offering Bi-directional prediction and Temporal or Spatial
Direct encoding modes [7], [8]. The goal of this research was
to apply Guided Encoding to additional modes, which are part
of the Main Profile and were not covered by previous work.
To evaluate the proposed algorithm we implemented modified
versions of the reference implementations of an H.264 decoder
and encoder that apply the concept of Guided Encoding to
video streams that utilize Bi-directional Prediction, Weighted
Prediction, Temporal Direct mode and Spatial Direct mode.

The structure of this paper is as follows: it starts with
a short technical background referring to several concepts
of the H.264 standard, which are required for understanding
our transcoding method. In the Content Insertion section we
explain our method of Guided Encoding, covering the methods
of handling different encoding modes supported by the Main
Profile. In section IV we present an evaluation of our method
and compare it to the naive approach, referring to run-time,
quality and bit-rate measurements. Finally, we summarize our
work and present our conclusions.

II. BACKGROUND

We assume basic knowledge of the H.264 standard by the
reader. Hence we provide only the background necessary to
understand the innovations in our encoding method and refer to
[9] wherever we make use of otherwise unexplained concepts.

A. Slice Types

In our work we used pictures that contain a single slice,
but this is not an inherent limitation of the algorithm. Intra (I)
slices contain only I macroblocks, where each macroblock is
predicted from previously coded data in the same picture. This
picture type is supported by all profiles of H.264. Predicted
slices (P) are Inter slices that contain I and P macroblocks.
Each P macroblock in a P slice is predicted from a single ref-
erence picture. This slice type is supported by all profiles. Bi-
directionally predicted slices (B) are generalized Inter slices.
This type of slice is the focus of the current work. They are
supported by the Main Profile. Each B macroblock in a B-slice
may be predicted from List 0 and/or List 1 reference picture.
B slices can contain P and I macroblocks as well.

B. Bi-directional Prediction

Bi-directional prediction is enabled in B-slices and utilizes
two lists of reference pictures, List 0 and List 1 ([9]). The
difference between the two lists is in the method of ordering
past and future reference pictures. List 0 enables efficient
access to past reference pictures while List 1 enables efficient
access to future reference pictures. In Bi-directional prediction
the samples are the weighted average of the samples from the
reference pictures specified by the two lists, and the motion
estimation is based on the two sets of provided or deduced
motion vectors.

C. Weighted Prediction

In weighted prediction mode each block is predicted as a
weighted sum of two reference blocks. The weighting factor,
alpha is either explicitly provided in the bitstream or deduced
according to the temporal distances of the reference pictures.

D. Direct Encoding

Direct encoding assumes a strong correlation between tem-
porally or spatially adjacent macroblocks. When direct coding
mode is used for coding a macro-block no motion vector is
transmitted. List 0 and List 1 vectors are calculated based
on previously coded vectors. Direct mode could be utilized
within P (skip mode) or B slices. Two types of correlation are
exploited - temporal and spatial correlation ([9], [8]). Direct
prediction is available for 16 × 16 and 8 × 8 partitions. It is
not available for 16 × 8 or 8 × 16 partitions.

E. Calculation of Motion Vectors

During decoding, Motion Vectors (MVs) are calculated
as a sum of two parts: a PMV (Predictive Motion Vector)
[10], that is calculated by the decoder according to prediction
parameters, and a DMV (Differential Motion Vector) that
is transmitted as part of the encoded bitstream. In Direct

encoding the DMV is not present as no data is transmitted
for the macroblock in this encoding mode. As we shall see
later, this has implications on our method of handling Spatial
Direct macroblocks.

III. CONTENT INSERTION

In H.264, transform domain manipulations could save only
a small portion of the encoding time and therefore the content
insertion is done in the Pixel Domain. Obviously it requires
decoding of the H.264 bitstream as a first step, but decoding
time is negligible compared to the encoding time, even when
optimizations such as Fast Mode Decision or our Guided
Encoding are applied. Therefore we concentrate on optimizing
the re-encoding process. The output picture is constructed by
a combination of the input picture and the inserted content, or
”logo”. The logo may be opaque or transparent to a degree
defined by the factor γ (Eq. 1), a real value in the range [0,
1], where 1 indicates an opaque logo and 0 indicates complete
transparency. γ is specified as a parameter to our encoder. Fig.
1 illustrates content insertion with γ = 0.5.

out[m, n] =

⎧⎨
⎩

γ · logo[m, n] + (1− γ) · in[m, n] m,n ∈ logo support

in[m, n] m,n /∈ logo support
(1)

Fig. 1. Example of content insertion with γ = 0.5

Our method of performing efficient encoding of video along
with content insertion is based on reusing the information
that exists in the original encoded video. An encoded H.264
stream contains many useful parameters which are the results
of the decision-making process performed while encoding
the original video. To extract this metadata we first run a
decoder that stores slice-level information and macroblock-
level information. To insert content into the video sequence
we operate on the decoded YUV sequence. We run an encoder
that takes the decoded video, the YUV sequence of the content
to be inserted and the metadata extracted by the decoder and
produces an encoded H.264 stream, combining the new content
with the original. Our decoder and encoder are based on the
H.264 reference implementation JVT-JM ver. 11.0 [11]. Fig.
2 illustrates our content insertion process.

The extracted coding domain metadata includes different
slice-level and macroblock-level encoding parameters. Slice-
level parameters include: slice type (I, P or B), quantiza-
tion parameter and weighted prediction type. For B-slices,

Fig. 2. Content Insertion Scheme

macroblock-level parameters include: quantization parameter,
macroblock type (partitioning and prediction mode), encoding
mode for each block in case of partitioning, forward and
backward reference list (values of List 0 and List 1), List 0
and List 1 motion vector values, forward and backward alpha
parameter and prediction direction (forward, backward or bi-
directional). In case of P-slices only the relevant subset of
these parameters is extracted. For Intra slices (I) block types
and prediction modes are extracted per macroblock.

A. Macroblock Classification

Macroblocks are classified into affected, indirectly affected
and unaffected. A macroblock is defined as affected when
at least one of its pixels is in the new content region. A
macroblock is indirectly affected when the pixels it uses for
prediction belong to an affected macroblock. Otherwise, it
is marked as unaffected. An Intra macroblock is indirectly
affected if the macroblock above or to the left of it is affected.
An Inter macroblock is indirectly affected when its motion
vector points to pixels that belong to affected macroblocks.
This is illustrated in Fig. 3.

Fig. 3. Macroblock classification. MB1 is directly affected by new content,
MB2 is indirectly affected because its motion vectors points to new content
and MB3 is unaffected.

Unaffected macroblocks are encoded according to the pa-
rameters saved in the metadata extracted by our decoder.
Encoding parameters for affected macroblocks in each picture
have to be fully recomputed since the old parameters are no
longer relevant. We also have to recalculate encoding parame-
ters for indirectly affected macroblocks since they use affected
macroblocks as their prediction references, and the reference
information is no longer relevant. In the case of B-slices
the determination of indirectly affected macroblocks becomes
quite complicated since macroblock pixel values depend on

backward as well as forward prediction. In the case of Spatial
Direct encoding mode the classification algorithm was further
extended to determine indirectly affected macroblocks.

B. Bi-directional Prediction Support

To support B-slices we need to handle both List 0 and List
1. List 1 reference picture identifiers were included in the
metadata exported by the decoder. The Prediction Direction
parameter is also extracted for each sub-partition of a mac-
roblock. During the guided encoding process we consider the
Prediction Direction value for each block and operate on List
0 and/or List 1 accordingly, i.e. we take into account only
reference pictures from the relevant lists.

C. Weighted Prediction

Support for Weighted Prediction requires extraction of the
forward and backward alpha parameters from the original
stream for every sub-partition of each macroblock, and ap-
plying these parameters during the encoding of unaffected
macroblocks. Also, on the picture level, one needs to extract
the flag that determines whether Weighted Prediction is to be
applied for this picture, and a flag that determines the mode
to be used, i.e. implicit or explicit weighted prediction. We
set these flags for each picture and the forward and backward
alpha factors for each macroblock to reuse weighted prediction
in the re-encoded video.

D. Temporal Direct Mode Handling

In Temporal Direct mode, predicted macroblocks are less
susceptible to changes in reference picture content compared
to Spatial Direct and therefore Temporal-Direct encoding
mode is handled similarly to other Inter modes. Encoding
mode, reference pictures and motion vector parameters are
enforced for unaffected macroblocks.

E. Spatial Direct Mode Handling

Due to the nature of Direct macroblocks any change in
a reference macroblock, which may be spatially quite far
from the current Direct macroblock, affects its parameters.
As mentioned, our encoder extracts the values of the Motion
Vectors (MV) and stores them as part of our metadata. In the
case of Direct macroblocks no data is written regarding the
motion vectors and there is no residual (DMV) that could fix
a PMV (Predicted Motion Vector) to match the value of the
MV we seek. The value is entirely dependent upon calculations
performed within the decoder. Therefore, if the data changes
in the area of a Direct macroblock, the predicted pixels may be
incorrect. This is due to the inconsistency between the original
data and the new data. We need to recalculate the motion
vectors to be consistent with the new content of the picture.
We reuse the original JVT ([11]) algorithm that calculates
motion vectors for Direct macroblocks, and avoid overriding
those values with the values that appear in the encoding
metadata and are no longer relevant. During transcoding we
have to either recalculate the motion vectors or choose a
different encoding mode for that macroblock. We first exam-
ined an approach where macroblocks encoded in a Spatial

Direct mode, that were found to be unaffected by the logo
insertion, were set to Bi-predictive 16x16 mode, overriding
the original mode. Then List 0 and List 1 reference indices
are set according to the metadata extracted in the decoding
stage, and motion vector predictor references are set using the
original function of the encoder that finds suitable reference
pictures. We abandoned this approach since changing mode
from Spatial Direct to 16x16 Bi-predictive increases the bit
rate significantly, because this type of encoding requires more
information to be written compared with direct encoding. As
a result, special handling of Spatial Direct mode is done in
two stages of our algorithm - in the stage of classification of
macroblocks into affected and unaffected (described in detail
bellow), and in the stage of choosing encoding parameters
for an unaffected macroblock. In the first stage we check
whether the Direct macroblock should be re-encoded from
scratch, or whether we can mark it as unaffected and set its
parameters according to the previously extracted metadata. If a
Spatial Direct macroblock is eventually marked as unaffected
we maintain its mode in the output bitstream.

Affected/Unaffected Macroblocks Determination: In clas-
sification of macroblocks as affected or unaffected, Spatial
Direct macroblocks are treated as a special case. We find the
co-located blocks and check whether one or more of them
are affected. To determine whether a macroblock should be
marked as affected we receive information about the co-located
macroblocks, similarly to the method used in the Motion
Vector prediction algorithm that looks at co-located blocks A,
B, C and D to determine the motion vector for macroblock E
[8]. The neighbor blocks are illustrated in Fig. 4.

Fig. 4. Neighbors used for Direct Macroblocks classification

If one of those neighbors is marked as affected we mark
our macroblock as affected as well. To find out whether
one of the neighbor blocks is affected we store an ”affected
macroblocks map” that is reset before beginning the encoding
of each slice. It is a 2-dimensional array with an element
for each macroblock. The classification of each macroblock
(as affected/unaffected/indirectly affected) is stored in this
map. The function get affected(block) looks up a value in this
matrix and return the block Affected status. If the macroblock
is marked as affected it is re-encoded, which prevents the effect
of the inserted content on surrounding macroblocks. This is
necessary since the new content creates inconsistencies be-
tween the original references and motion vectors and the visual
data they refer to. Fully re-encoding the Direct macroblocks

that have affected neighbors prevents this inconsistency. The
classification algorithm for Spatial Direct macroblocks is de-
scribed in Algorithm 1.

Algorithm 1 Affected Macroblocks Classification for Direct
Macroblocks

if (MB is Direct) and (direct mode type is Spatial) then
get co-located blocks (A, B, C)
if block C is not available then

use block D instead
end if
for each block do

if block is Affected then
current macroblock ← Affected

end if
end for

end if

Notice that this approach causes the affected area to grow,
propagating from the ”Logo area” to its surroundings through
neighboring macroblocks. Tests showed that in many slices
about 70% of the direct macroblocks are re-encoded. Although
20% of them were in the ”Logo area” so they would have
been marked as affected anyway, there are still 50% of them,
which increases the encoding time of B-slices. To improve
run-time we wish to minimize the amount of Direct mac-
roblocks being marked as affected. We introduce a hierarchical
status scheme. In this scheme macroblocks could be marked
indirectly affected with several levels of indirection. Each
time a Direct macroblock is marked as affected due to an
affected neighbor its indirection level is decreased and when
it reaches zero it becomes unaffected, and therefore won’t be
re-encoded. As part of the attempt to minimize the affected
area by adding indirect affection levels, the Affected status
which was a boolean flag, is changed to an enumeration of
several levels of affection. The modified algorithm is described
in Algorithm 2. A possible example for assigning different
indirection levels to macroblocks is presented in Fig. 5.

Fig. 5. Indirection Level in Affected Macroblocks Classification

Algorithm 2 Affected Macroblocks Classification with Indi-
rection Levels

if (MB is Direct) and (direct mode type is Spatial) then
get co-located blocks (A, B, C)
if block C is not available then

use block D instead
end if
for each block do

block.affected ← get affected(block)
affected ← MAX(affected, block.affected)
if affected > 0 then

affected ← (affected - 1)
end if

end for
end if

IV. PERFORMANCE

A. Run-time

To evaluate the proposed algorithm performance we com-
pared the time required to insert new content to an encoded
video sequence using our encoder and the naive approach. The
tests were performed with CIF and SIF sequences and varying
values were used for the transparency factor. The frame rate
specified to the encoder was 30 FPS. For the results presented
here, the inserted sequence was ”news” (resized to 140x90)
with transparency factor γ = 0.7. The run-time testing was
performed on video sequences of various lengths, and we
noticed that the sequence length does not have any significant
effect on run-time measurements. We therefore proceeded with
measurements on short video sequences of 45 pictures. The
original H.264 bitstreams were encoded so that the picture
types used in encoding were ordered as follows: I-B-B-P-B-
B-P... . We worked with bitrate around 500 KB/sec, varying
between different video sequences. Only the first picture was
coded as Intra. Adding more Intra slices would only bias the
run-time results in our favor because Intra slices are very
fast to encode, hence we avoided it. The logo size used in
the tests was approximately 15% the size of the picture. We
tested the encoder on a Linux machine, with no other tasks
executed at the same time. Thus, encoding the same video
several times provided consistent result. Several representative
run-time measurements, performed using the naive approach
and using our method are presented in Table I. The comparison
between the two methods is presented graphically in Fig. 6.

We can see significant improvement in run-time for all
tested modes. For certain scenarios we observed a run-time
improvement of close to 90%. Although the results may vary
subject to specific clip characteristics, the average improve-
ment is significant for all encoding modes. The average time-
reduction is 77% for Bi-directional predictive coding without
Direct mode, 86% Temporal Direct and 75% for Spatial Direct.

B. Video Quality

To ensure that we preserve video quality we performed
PSNR measurements for the different encoding modes we
supported. The evaluation setup is illustrated in Fig. 7. We

TABLE I
RUN-TIME COMPARISON

Video Mode Transcoding Time Speed-up
Sequence (seconds) factor

Naive Guided
mobile No Direct 44 9 4.89

Temporal Direct 70 9.75 7.18
Spatial Direct 70 16 4.38

flower No Direct 54 10 5.4
garden Temporal Direct 81.6 10.24 7.97

Spatial Direct 83 20 4.15
Paris No Direct 54 16 3.38

Temporal Direct 77 9.8 7.85
Spatial Direct 83 22 3.77

Fig. 6. Run-time comparison (time is in seconds)

decoded the H.264 output bitstream of the Guided Encoding
chain (1) and the output of the naive transcoding chain, getting
two YUV sequences. We compared the quality of both outputs
by calculating the PSNR between the areas that do not contain
the logo in both videos. We excluded the logo area from the
comparison since it is fully re-encoded in both setups and
does not contribute to our comparison. We are interested in
the quality of encoding in the unaffected area where Guided
Encoding comes into play. The calculated PSNR for all tested
encoding modes was above 45.5 dB, indicating that Guided
Encoding does not cause a degradation in video quality.

Fig. 7. Performance evaluation setup

C. Bit-rate

While having a significant improvement in encoding run-
time, in most cases we experience an increase in bit-rate. This
is due to the sub-optimality of the encoding decisions used
in Guided Encoding, which do not consider the new inserted
content. We measured the increase in bit-rate in comparison
to the naive solution using multiple video clips with different
characteristics. For videos with P-slices only, the increase in
bit-rate was 2.5% in the worst case. In case of Bi-directional
predictive encoding without Direct mode, an average increase
of 30% in bit-rate was measured. Approximately the same
increase was measured for Temporal Direct. For some ”busy”
clips having a lot of motion (Stefan) the increase in bit-
rate reached 40%. For Spatial Direct mode a much lower
average increase of about 15% was measured. This result is
expected since a relatively big portion of the macroblocks is
marked as affected and enforced to be re-encoded using their
original, Direct, mode. This results in relatively low bit-rate
compared to other modes. Part of the increase in bit-rate might
be explained by our method of testing. The naive approach
bit-rate testing involves decoding the output bitstream of our
decoder (which contains the logo in it) and re-encoding it with
the original JVT-JM encoder. This method involves multiple
applications of the de-blocking filter within the decoder and
the encoder that possibly smooth the pictures and decrease the
amount of information, which results in lower bit-rate. The
smoothing may well cause some macroblocks to be encoded
using Direct mode, which was not the case in the original
video. Our encoder operates on a video that is closer to the
original, having gone through less encoding and decoding
stages. This of course does not explain all of the bit-rate
increase, and most of it is caused, as mentioned, by encoding
using parameters deduced for the original video. We should
be aware that the output bit-rate is actually not controllable
since the information in the inserted content may well be
much denser than in the original video. To have a predictable
and controlled bit-rate, rate control functionality has to be
incorporated.

V. CONCLUSION

We developed the concept of Guided Encoding and demon-
strated that it provides superior performance to the naive
approach. We further showed that it is applicable to Main
profile features, starting with simple ones, like Weighted
Prediction and ending with more complex features, like Direct
Mode. Furthermore, this idea seems to be applicable to other
profiles as well and possibly to other codecs. By using
the Guided Encoding method we were able to significantly
decrease transcoding time. Our transcoder is on average 5
times faster (subject to specific video characteristics) than
the naive transcoder. The most significant improvement was
achieved for Temporal Direct encoding mode - average run-
time reduction was 86%. For Bi-directional prediction without
Direct macroblocks an average improvement of 77% was
achieved and 75% for Spatial Direct mode. We succeeded

in showing solutions that speed up encoding without loss in
quality, and in that sense met an important initial requirement
for the research. We also suggested a sub-optimal solution
in terms of quality for Spatial Direct encoding, leaving the
run-time against video quality dilemma to the user. Obtaining
much better run-time we bear the penalty of an increase in bit-
rate, which is quite negligible for P-slices and more significant
for B-slices. As we explained, to obtain a stable output bit-rate,
rate control must be applied in any case.

ACKNOWLEDGMENT

We wish to thank Prof. David Malah, head of the Signal and
Image Processing Lab (SIPL) at the Technion for reviewing
the work and providing valuable comments, Yair Moshe for
sharing his knowledge in H.264 and helping the research,
SIPL staff Ziva Avni and Avi Rosen for providing us with
a friendly environment that was so helpful to our work and
Asaf Cidon for reviewing and providing comments. We wish
to acknowledge the NEGEV consortium (http://www.negev-
initiative.org) for support and sponsorship of the research. We
would also like to express our gratitude to Assaf Tzabari, Itai
Shpak and Naama Hait who had conducted research about
content insertion into MPEG-2 encoded video, Yuval Bymel
and Dan Vardi for their initial research of the methods to
perform content insertion in the context of H.264 Baseline
Profile, Natan Goldfarb and Ori Rottenstreich whose study of
the Main Profile and the JVT-JM had put us in a good starting
point for our work. Finally we wish to thank Nimrod Peleg
for his constant support through all the stages of our work.

REFERENCES

[1] S.-F. Chang and D. G. Messerschmitt, “Compositing motion-
compensated video within the network,” MULTIMEDIA ’92. 4th IEEE
ComSoc Conference on Multimedia Communications, pp. 40–56, Apr.
1992.

[2] S.-F. Chang and D. G. Messerschmitt , “Manipulation and compositing
of MC-DCT compressed video,” IEEE Journal on Selected Areas in
Communications, vol. 13, pp. 1–11, Jan. 1995.

[3] Y. Noguchi, D. G. Messerschmitt, and S.-F. Chang, “MPEG video
compositing in the compressed domain,” ISCAS ’96., ’Connecting the
World’., 1996 IEEE International Symposium on Circuits and Systems,
vol. 2, pp. 596–599, May 1996.

[4] N. Roma and L. Sousa, “Fully compressed-domain transcoder for
PIP/PAP video composition,” PCS2007, Nov. 2007.

[5] C.-H. Li, H. Lin, C.-N. Wang, and T. Chiang, “A fast H.264-based
Picture-in-Picture (PIP) transcoder,” IEEE International Conference on
Multimedia and Expo (ICME’04), vol. 3, pp. 1691–1694, 2004.

[6] C.-H. Li, C.-N. Wang, and T. Chiang, “A low complexity picture-in-
picture transcoder for video-on-demand,” International Conference on
Wireless Networks, Communication and Mobile Computing, vol. 2, Jun.
2005.

[7] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding,
2003.

[8] A. M. Tourapis, F. Wu, and S. Li, “Direct mode coding for bipredictive
slices in the h.264 standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 15, pp. 119–126, Jan. 2005.

[9] I. E. Richardson, H.264 and MPEG-4 Video Compression. John Wiley
and Sons Ltd, 2003.

[10] J. Yang, K. Won, and B. Jeon, “Motion vector coding with selection
of an optimal predictive motion vector,” Optical Engineering Letters,
vol. 48, Jan. 2009.

[11] A. M. Tourapis, A. Leontaris, K. Suhring, and G. Sullivan, H.264/14496-
10 ACV Reference Software Manual, ISO/IEC MPEG & ITU-T VCEG,
July 2009.

