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ABSTRACT 
Practical experience is an important aspect of the training 
of every engineer. One way to develop such experience is 
by hands-on laboratory experimentation which involves 
cutting-edge technology. In this paper, we present a signal 
processing lab experiment developed for undergraduate 
students. Throughout the experiment, students first learn 
the basics of adaptive filtering and implement an adaptive 
echo cancellation algorithm using MATLAB. Then, students 
use a software framework for implementing the same echo 
cancellation algorithm on a BeagleBoard development 
platform using both ARM and fixed-point DSP cores of an 
embedded system-on-chip from Texas Instruments. In a 
relatively short amount of time (8 hours at the lab and a 
few additional hours of homework), students learn an 
important signal processing technique, as well as use 
complex state-of-the-art DSP hardware to implement it as 
part of an application running in real-time.  

1.    INTRODUCTION 

Signal processing has many theoretical and practical 
aspects. While signal processing theory has been taught in 
academia for decades, teaching the cross-over from theory 
to practice has always been lacking. Beginning with the 
theory allows instructors to focus on the underlying 
concepts of signal processing without the distractions 
associated with practical implementation. However, 
engineers must be able to efficiently and cost-effectively 
implement these concepts in real-world designs [1, 2].  

Digital signal processors (DSPs) are optimized to 
perform typical signal processing tasks, such as filtering, 
convolution, or FFT. They usually consume less power and 
are cheaper than general-purpose processors. These 
properties make DSPs useful in a wide range of 
applications, especially for real-time, cost-effective 
embedded systems, such as cellular phones, modems, and 
disk drivers. The use of DSPs has been incorporated in 
some universities as part of the signal processing 
curriculum, usually in the context of a course of one or two 
semesters [3, 4]. However, allowing one or two semesters 
for implementation may not leave enough time to gain deep 
theoretical knowledge; so, giving students a taste of 
implementation in a shorter time period may be desired. 
Furthermore, modern embedded systems are using devices 
with multiple processing units manufactured on a single 

chip, creating a multi-core system-on-chip (SoC). On such 
chips, fixed-point DSP cores are usually used to perform 
specialized DSP operations, while floating-point cores 
allow the overall system to handle general-purpose tasks. 
Software development for SoC involves partitioning the 
application among the various cores. The development 
environment is usually heterogeneous, with tools that 
support code generation and debugging on all cores. 
Obviously, developing for such a platform is more 
challenging compared to developing for a single-core DSP 
platform.  

In this paper, we present a laboratory experiment that 
has been developed in the Signal and Image Processing 
Laboratory (SIPL) at the Department of Electrical 
Engineering, Technion – Israel Institute of Technology. The 
experiment is one of about three dozen experiments, 8-
hours each, offered to students in our department. Each 
undergraduate student must select and carry out several of 
these experiments as part of the obligatory curriculum for a 
B.Sc. degree. The experiment presented here is designed for 
undergraduate students who took at least one basic course 
in signal processing. Some of the students who perform the 
experiment may have already taken some more advanced 
signal processing courses, but no knowledge of adaptive 
filtering is assumed. The experiment is part of our lab’s 
educational activities in the area of embedded signal 
processing. These activities include experiments and 
student projects, such as the ones described in [2, 5-8]. One 
of the main goals of this experiment is to introduce the 
students to development for an embedded platform; thus, no 
preliminary knowledge of such a platform is assumed, 
either. An OMAP3 processor from Texas Instrument [9] is 
used as an example. Creating a hands-on lab experiment for 
students, introducing and utilizing SoC architecture, is not 
an easy task due to the complexity of such a system. By 
only spending a few hours at the lab, with no assumption of 
background knowledge beyond a basic signal processing 
course, the creation of such an experiment becomes very 
challenging. 

The experiment consists of two sessions of 4-hours 
each, with equal time for homework. The experiment is 
performed in pairs. We have installed four experiment 
stations; so, currently, 8 students perform the experiment at 
the same time and are guided by one instructor. Before each 
session, students are required to complete a preparatory 



report. Questions that should be answered in this report 
guide the reading of the lab booklet, emphasize important 
concepts, and ensure that students arrive at the lab with the 
proper background. After completing each lab session, 
students have to submit a final report in which they analyze 
their results and draw conclusions. The students’ grades are 
based on the two preparatory reports and two final reports, 
as well as on the lab instructor’s evaluation.  

The remainder of this paper is organized as follows. In 
Section 2, we describe the first part of the experiment, 
where students learn the basics of adaptive filtering using 
MATLAB. In Section 3, we describe the second part of the 
experiment. In this part, students implement an adaptive 
filter in C on a host computer and port their implementation 
to an embedded platform. We summarize and draw 
conclusions in Section 4.  

2.   ADAPTIVE ECHO CANCELLATION 

Adaptive filtering is a technique that estimates an unknown 
linear system based on the sequential analysis of input and 
reference signals. Adaptive filters are useful in cases where 
system parameters are slowly changing, and where a filter 
should automatically adapt to this change. They can be used 
in many applications, such as echo cancellation, channel 
equalization, and active noise-control. At every time 
instance, the adaptive filtering algorithm maintains a 
current estimate of the linear system, while applying it to a 
reference signal 𝑥[𝑛] and examining the output          
𝑑[𝑛] − 𝑦[𝑛], as depicted in Figure 1. The primary input and 
reference signals, 𝑑[𝑛] and 𝑥[𝑛], respectively, are assumed 
to be partially correlated. A well-known archetype of 
adaptive filtering algorithms is the least mean squares 
(LMS) algorithm. 

The LMS algorithm arises as a stochastic gradient 
descent approach to minimizing 

 𝐸{(𝑑[𝑛] − 𝑦[𝑛])2} (1)  

assuming that 𝑥[𝑛] and 𝑑[𝑛] are random processes. The 
vector of adaptive filter coefficients 𝒘�𝒏 takes the form 

 𝒘�𝒏 = 𝒘�𝒏−𝟏 + 𝜇 (𝑑[𝑛] − 𝑦[𝑛]) 𝒙𝒏 (2)  

where 𝒙𝒏 =  [ 𝑥[𝑛] ⋯ 𝑥[𝑛 − 𝑁 + 1] ]𝑇 and 𝜇 is the step 
size of the underlying stochastic gradient descent. Assume 
some arbitrary initial condition 𝒘�𝟎. Further details 
regarding LMS and adaptive filtering can be found in [10]. 

In this experiment, students deal with the well-known 
acoustic echo cancellation problem [11]. We simulate a 
device containing a speaker and a microphone, positioned 
inside a medium-sized reverberant room. The device’s 
microphone picks up a signal 𝑑[𝑛] containing the voice of 
two persons speaking simultaneously, where one is located 
somewhere in the room (𝑠1), and the other is on the other 
side of the phone line, speaking through the device’s 
speaker (𝑠2). We denote by ℎ1[𝑛] and ℎ2[𝑛] the Room 
Impulse Response vectors (RIRs) modifying the signals 

𝑠1[𝑛] and 𝑠2[𝑛], respectively. The aim, as presented to the 
students, is to extract the speech of the person located in the 
room from the microphone signal 𝑑[𝑛], assuming the signal 
𝑥[𝑛] emanating from the device’s speaker is known. 
Formally, 

 
𝑥[𝑛] = 𝑠2[𝑛] 

𝑑[𝑛] = 𝑠1[𝑛] ∗ ℎ1[𝑛] + 𝑠2[𝑛] ∗ ℎ2[𝑛] 
(3)  

and the aim is to produce the signal 𝑠1 ∗ ℎ1 as 𝑑[𝑛] − 𝑦[𝑛]. 
An adaptive filtering approach suits this problem well, as 
the signal from the device’s speaker is slightly modified 
before being picked up by the microphone due to the room 
reflection and absorption properties. We model the 
microphone signal as the primary input signal 𝑑[𝑛] and the 
device’s speaker signal as the reference signal 𝑥[𝑛], and 
attempt to estimate ℎ2 for correct subtraction of 𝑠2 ∗ ℎ2 
from the input signal 𝑑[𝑛]. One should note that in this 
setup, the RIR does not change over time; thus, there is no 
real need for adaptivity, but rather for online operation of 
the algorithmic solution. 

The first part of the experiment is performed solely on a 
host computer, and its main stages are: introduction to echo 
cancellation, estimation using LMS, and estimation using 
partially fixed-point implementation of LMS. Due to the 
feedback present in adaptive filters, they are sensitive to 
numerical impreciseness. Such numerical impreciseness 
may be easily introduced by inadvertent fixed-point 
implementation. Thus, it is didactically interesting to 
investigate fixed-point implementation as early as possible 
in the experiment. In the introduction stage, students are 
presented with the above problem and are encouraged to 
analyze it and solve it using naïve measures, such as simple 
subtraction of the reference signal 𝑥[𝑛] from the primary 
input signal 𝑑[𝑛]. Such an attempt will fail due to above-
mentioned room reverberation, embodied in ℎ2. Following 
the failure of the naïve measures, the students implement a 
basic version of the LMS algorithm and examine its 
performance for the problem at hand. They are guided to 
test and find a step size that leads to good performance of 
the algorithm for this specific scenario and set of signals. 
Then, the students force the implementation to use only 
values feasible under a fixed-point regime for the LMS 
parameters and intermediates, while the mathematical 
operations are still carried out in floating-point. Since we 
expect that having students perform the mathematical 
operations in fixed-point would be time consuming beyond 
the scope of the experiment, we intentionally avoid that. To 
the effect of using fixed-point values for parameters and 
intermediates, students are instructed to use MATLAB’s 
fixed-point toolbox. The students are asked to find suitable 
parameters for the fixed-point representation of the 
algorithm parameters and intermediates, i.e., word size and 
fraction length, bringing into consideration both the 
stability and accuracy of the resulting implementation, as 
well as its expected computational cost. To this effect, they 
are instructed to observe histograms of the values of the 
intermediates which arise when running LMS with the 



given signals and chosen parameters. In forming this 
experiment, we chose a basic version of the LMS algorithm 
for several reasons. Most importantly, this algorithm is a 
classical and an important archetype in adaptive filtering, 
and serves as a necessary basis for more complex adaptive 
filtering algorithms. Nevertheless, it is quite simple and 
rather intuitive, while the vast majority of the target 
students are unfamiliar with it. 

Even the most basic version of LMS has two design 
parameters: the length of the estimated impulse response 𝑁, 
as well as the step size 𝜇. Examining the effect of these 
parameters on the behavior of the algorithm is of 
educational value. However, in order to remain within the 
experiment’s time frame, we chose to examine only the 
effect of the step size 𝜇, as we believe understanding its 
importance and effect has the highest educational value 
among the two. The step size 𝜇 has a critical effect on the 
convergence and performance of the LMS algorithm. 
Moreover, it is the more difficult parameter to choose. The 
students are instructed in the choosing of an appropriate 
value for the step size 𝜇. At first, the students witness 
divergence of LMS, given an inappropriate step size 𝜇. 
Then, we explain to them that 𝜇 should be inversely 
proportional to the variance of the input signal 𝜎𝑑2, as well 
as to the length of the estimated impulse response 𝑁, i.e. 

 𝜇 = 𝜇0
1

𝑁𝜎𝑑2
 (4)  

where 𝜇0 is an appropriate constant. Thus, given the 
variance of the input signal 𝜎𝑑2, the problem of finding a 
good value for μ is transformed into one of finding a good 
value for 𝜇0. Given a range of values for 𝜇0, students are 
instructed to perform a coarse grid search within that range, 
choosing a value for 𝜇0 according to the resulting 
performance, as reflected by performance evaluation 
measures. 

We utilize two performance evaluation measures. One is 
qualitative where the students are asked to listen to the 
output and evaluate its perceived intelligibility and quality. 
The other performance measure is quantitative where, given 
a ground-truth signal 𝑠1 ∗ ℎ1, we define  

 𝑅[𝑛] = �τ𝑛−1
(𝑠1[𝑘] ∗ ℎ1[𝑘])2

(𝑠2[𝑘] ∗ ℎ2[𝑘] − 𝑦[𝑘])2

𝑛

𝑘=1

 (5)  

where τ is an exponential forgetting factor. At every time 
instant 𝑛, 𝑅[𝑛] gives an assessment of the SNR up to that 
time instant, with the past weighted exponentially to reduce 
its importance. The weighting allows for this performance 
measure to signify the convergence of the examined 
algorithm. 

For the two signals, 𝑠1[𝑛] and 𝑠2[𝑛], we use recordings 
of two men, with a sample depth of 16 bits. The two signals 
are downsampled to 11025 Hz and trimmed to 30 seconds. 
The two RIRs, ℎ1 and ℎ2, both of length 4096 samples, are 
generated according to the setup depicted in Figure 2, using 
publicly available software [12]. In choosing these scenario 
parameters, we aim to balance five considerations, with 
various trade-offs existing among them: 
• Evident convergence of the online algorithm. 
• Rate of computations on the target platform. 
• Acceptable MATLAB running times (even for naïve 

implementations). 
• Adequate precision for representing speech signals.  
• Realistic room modeling. 

We chose a 16-bit sample depth so that the signals 
contain only a small quantization noise, as it might hinder 
the performance of the echo cancellation. The room 
arrangement, including physical size, speaker, and 
microphone locations and reverberation time, were chosen 
as to reflect a typical office and conference call setting. 

3. EMBEDDED IMPLEMENTATION 

After completing the first part of the experiment, the 
students have gained some practical experience with LMS 
using MATLAB, including fixed-point implementation. In 
the second part of the experiment, the students implement 
an adaptive filter in C on a host computer. Then, they 
implement the same adaptive filter on an embedded 
platform. During the implementation, the students are 
introduced to the different aspects of embedded 
development, such as embedded operating systems, 
heterogeneous multi-core processors, real-time constraints, 
and optimization. 
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Figure 1: Adaptive filtering structure. 

Figure 2: Room setup simulated in the experiment. 



The growing popularity of mobile devices, such as 
smartphones and tablets, sets some new requirements for 
embedded hardware and software. Such devices are often 
used for varied applications that involve different types of 
media and that are computationally intensive. 
Heterogeneous multi-core SoC processors are a natural 
choice for this kind of devices. The OMAP3530 processor 
from Texas Instrument [9] is a very popular example of  
such a processor. The BeagleBoard [13], which is an 
OMAP3530-based development module, makes the perfect 
choice for the laboratory target platform, mainly because of 
its low cost, availability, state-of-the-art OMAP3 processor, 
sufficient peripheral access, and the existence of a large and 
active development community. The growing popularity of 
embedded Linux and its free licensing makes it the obvious 
choice of a target operating system. 

Figure 3 depicts the hardware configuration used in the 
embedded part of the experiment. A BeagleBoard 
(embedded target) is connected to a host computer using a 
dedicated Ethernet connection, a serial RS-232 connection, 
and a JTAG emulator. The Ethernet connection is the main 
connection channel between the host and target, while the 
JTAG connection is used for debugging the DSP core of the 
target. The serial connection is used by the experiment 
instructor for initial setup and maintenance. We equip the 
BeagleBoard with a small keyboard and connect it to a 
monitor. This is done in order to help the students 
understand the ability of the embedded platform to 
constitute a standalone product. To allow a pair of students 
to cooperate on the experiment easily, without disturbing 
others at the lab, we also provide two pairs of headphones 
with a signal splitter. The general-purpose processor (GPP) 
ARM core of the embedded platform is running embedded 
Linux, and the host computer is also running Linux. There 
are two main reasons for this choice. First, since the 
destination platform is running embedded Linux, and since 
for many students this is their first encounter with the Linux 
operating system, getting to know it on the host computer 
makes for a good kick start. Second, some development and 
debugging tools are currently only available for Linux. 

Students who perform the experiment are faced not only 
with the need to grasp embedded implementation concepts, 
but must also deal with new tools. There are many complex 
development tools due to the heterogeneous nature of SoC 
platforms. To ease coping with this challenge, we have built 
a unified development framework. We achieved this by 
creating a development environment that produces all 

executables during the practical phase of the laboratory, 
whether the destination platform is the host computer, the 
embedded ARM core, or the embedded ARM core 
outsourcing the computationally intensive tasks to the DSP 
core. In all three configurations, the students use the same 
integrated development environment (Code Composer 
Studio [14]) and implement the same functionality in order 
to perform acoustic echo cancellation. Figure 4 depicts this 
idea. In addition to the unified development framework, we 
supply a skeleton of a multimedia application, including 
means for input and output, memory management, file 
access, inter-processor communication, etc. The students 
implement a given function, while the rest of the 
application is already implemented. This way, students do 
not have to spend time on technical details and can focus on 
the algorithm, the concept of fixed-point representation, and 
the unique DSP architecture. 

 An alternative approach to the skeleton application and 
unified development environment that we supply, and that 
we don’t use in this experiment, is using Simulink’s 
Embedded Coder [15]. The Embedded Coder tool allows 
the user to design an algorithm using Simulink, and to 
automatically generate a prototype application that runs on 
an embedded processor. This approach is easy to implement 
in a short amount of time. However, it has three main 
drawbacks compared with the approach we use in the 
experiment. First, the resulting embedded code is complex 
and cannot be edited by a beginner. Second, porting to the 
embedded platform is automatic, so the user is not exposed 
to key embedded concepts, development environments and 
tools. Third, this approach is not common in the industry; 
so, using it in the experiment will neither prepare the 
students to practical work today, nor in the near future. 

During the embedded part of the experiment, we use 
Linux input and output redirection capabilities to switch 
signal sources and destinations seamlessly. We switch the 
input between a file (a signal prepared in advance for the 
laboratory) and a microphone, and the output between a file 
(for playing the signal in order to check that the result 
sounds as expected) and the analog audio output of the 
BeagleBoard (in order to hear if the implementation meets 
real-time constraints). At first, the students are instructed to 

Figure 3: Hardware layout of the embedded part of the 
experiment. 

Figure 4: The unified development framework created for 
this experiment helps students software development by 
creating an abstraction over different hardware targets. 
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compile their code for the ARM core. Students are 
surprised to find that, although the application performs 
correctly, real-time constraints are not met, meaning that 
the audio reproduced in real-time is discontinuous.  From 
this point on, students are instructed how to evolve the 
implementation to meet real-time constraints. The 
application displays the processing rate, so that the students 
get to see a numeric indication of the improvement in 
running time. The students are presented with a simplified 
version of a typical DSP optimization process, as described 
in [16]. The students are guided to apply the optimization 
process until real-time constraints are met. Optimization is 
performed through several stages: 

• Buffering – A buffer is an area of memory that is 
reserved to temporarily store input data. As input is 
acquired sample-by-sample, and in order to minimize 
system overheads, input samples are loaded into a 
buffer and processed together. The students are 
introduced to this idea and have to discuss the 
tradeoffs of using different buffer sizes. 

• Outsourcing computationally intensive tasks to the 
DSP core  

• Transforming the code to be fixed-point – After 
outsourcing part of the code from the ARM to DSP 
the core, the students transform this part from 
floating-point to fixed-point in order to support the 
native numerical representation of the DSP. In this 
stage, the scaling factors that were found during first 
session of the experiment are used. 

• Correct usage of compiler flags, keywords, and 
pragma (implementation-dependent) directives – The 
students are guided to use different compiler options 
and keywords for parallel utilization of the DSP 
functional units. High throughput is achieved by usage 
of the DSP pipeline. The students analyze compiler 
feedback and resulting performance to get insights on 
the architecture of the DSP core.  

In all parts of the experiment, special emphasis is placed 
on teaching the students correct embedded development 
habits, such as frequent compilation, testing, and 
debugging. General engineering methodologies and 
considerations are also presented and practiced. 

4. CONCLUSION 

In this paper, we have described a novel laboratory 
experiment for undergraduate students with only basic 
background in signal processing, and none in embedded 
systems. During the experiment, the students are exposed to 
the basics of adaptive filtering, and to aspects of embedded 
signal processing implementation. We use the BeagleBoard 
development board as a target platform. This board contains 
an OMAP3 system-on-chip, with ARM and DSP cores. The 
students are able to use such a complex system in a very 
short time (only 8 hours in class) due to a software 
framework that was created especially for this purpose. In 
order to encourage similar experiments in other 
universities, we will supply the full code and 

implementation solutions for the experiment upon an 
instructor's request. 
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