
A LABORATORY EXPERIMENT FOR REAL-TIME ECHO CANCELLATION
USING A BEAGLEBOARD

Ori Bryt, Asaf Elron, Pavel Lifshits, Tsahee Zidenberg, Yair Moshe, Nimrod Peleg

Signal and Image Processing Laboratory (SIPL)
Department of Electrical Engineering, Technion – Israel Institute of Technology

Technion City, Haifa 32000, Israel
Phone: +(972)-4-8294746, fax: +(972)-4-8292796, e-mail: yair@ee.technion.ac.il

http://sipl.technion.ac.il/

ABSTRACT
Practical experience is an important aspect of the training
of every engineer. One way to develop such experience is
by hands-on laboratory experimentation which involves
cutting-edge technology. In this paper, we present a signal
processing lab experiment developed for undergraduate
students. Throughout the experiment, students first learn
the basics of adaptive filtering and implement an adaptive
echo cancellation algorithm using MATLAB. Then, students
use a software framework for implementing the same echo
cancellation algorithm on a BeagleBoard development
platform using both ARM and fixed-point DSP cores of an
embedded system-on-chip from Texas Instruments. In a
relatively short amount of time (8 hours at the lab and a
few additional hours of homework), students learn an
important signal processing technique, as well as use
complex state-of-the-art DSP hardware to implement it as
part of an application running in real-time.

1. INTRODUCTION

Signal processing has many theoretical and practical
aspects. While signal processing theory has been taught in
academia for decades, teaching the cross-over from theory
to practice has always been lacking. Beginning with the
theory allows instructors to focus on the underlying
concepts of signal processing without the distractions
associated with practical implementation. However,
engineers must be able to efficiently and cost-effectively
implement these concepts in real-world designs [1, 2].

Digital signal processors (DSPs) are optimized to
perform typical signal processing tasks, such as filtering,
convolution, or FFT. They usually consume less power and
are cheaper than general-purpose processors. These
properties make DSPs useful in a wide range of
applications, especially for real-time, cost-effective
embedded systems, such as cellular phones, modems, and
disk drivers. The use of DSPs has been incorporated in
some universities as part of the signal processing
curriculum, usually in the context of a course of one or two
semesters [3, 4]. However, allowing one or two semesters
for implementation may not leave enough time to gain deep
theoretical knowledge; so, giving students a taste of
implementation in a shorter time period may be desired.
Furthermore, modern embedded systems are using devices
with multiple processing units manufactured on a single

chip, creating a multi-core system-on-chip (SoC). On such
chips, fixed-point DSP cores are usually used to perform
specialized DSP operations, while floating-point cores
allow the overall system to handle general-purpose tasks.
Software development for SoC involves partitioning the
application among the various cores. The development
environment is usually heterogeneous, with tools that
support code generation and debugging on all cores.
Obviously, developing for such a platform is more
challenging compared to developing for a single-core DSP
platform.

In this paper, we present a laboratory experiment that
has been developed in the Signal and Image Processing
Laboratory (SIPL) at the Department of Electrical
Engineering, Technion – Israel Institute of Technology. The
experiment is one of about three dozen experiments, 8-
hours each, offered to students in our department. Each
undergraduate student must select and carry out several of
these experiments as part of the obligatory curriculum for a
B.Sc. degree. The experiment presented here is designed for
undergraduate students who took at least one basic course
in signal processing. Some of the students who perform the
experiment may have already taken some more advanced
signal processing courses, but no knowledge of adaptive
filtering is assumed. The experiment is part of our lab’s
educational activities in the area of embedded signal
processing. These activities include experiments and
student projects, such as the ones described in [2, 5-8]. One
of the main goals of this experiment is to introduce the
students to development for an embedded platform; thus, no
preliminary knowledge of such a platform is assumed,
either. An OMAP3 processor from Texas Instrument [9] is
used as an example. Creating a hands-on lab experiment for
students, introducing and utilizing SoC architecture, is not
an easy task due to the complexity of such a system. By
only spending a few hours at the lab, with no assumption of
background knowledge beyond a basic signal processing
course, the creation of such an experiment becomes very
challenging.

The experiment consists of two sessions of 4-hours
each, with equal time for homework. The experiment is
performed in pairs. We have installed four experiment
stations; so, currently, 8 students perform the experiment at
the same time and are guided by one instructor. Before each
session, students are required to complete a preparatory

report. Questions that should be answered in this report
guide the reading of the lab booklet, emphasize important
concepts, and ensure that students arrive at the lab with the
proper background. After completing each lab session,
students have to submit a final report in which they analyze
their results and draw conclusions. The students’ grades are
based on the two preparatory reports and two final reports,
as well as on the lab instructor’s evaluation.

The remainder of this paper is organized as follows. In
Section 2, we describe the first part of the experiment,
where students learn the basics of adaptive filtering using
MATLAB. In Section 3, we describe the second part of the
experiment. In this part, students implement an adaptive
filter in C on a host computer and port their implementation
to an embedded platform. We summarize and draw
conclusions in Section 4.

2. ADAPTIVE ECHO CANCELLATION

Adaptive filtering is a technique that estimates an unknown
linear system based on the sequential analysis of input and
reference signals. Adaptive filters are useful in cases where
system parameters are slowly changing, and where a filter
should automatically adapt to this change. They can be used
in many applications, such as echo cancellation, channel
equalization, and active noise-control. At every time
instance, the adaptive filtering algorithm maintains a
current estimate of the linear system, while applying it to a
reference signal 𝑥[𝑛] and examining the output
𝑑[𝑛] − 𝑦[𝑛], as depicted in Figure 1. The primary input and
reference signals, 𝑑[𝑛] and 𝑥[𝑛], respectively, are assumed
to be partially correlated. A well-known archetype of
adaptive filtering algorithms is the least mean squares
(LMS) algorithm.

The LMS algorithm arises as a stochastic gradient
descent approach to minimizing

 𝐸{(𝑑[𝑛] − 𝑦[𝑛])2} (1)

assuming that 𝑥[𝑛] and 𝑑[𝑛] are random processes. The
vector of adaptive filter coefficients 𝒘�𝒏 takes the form

 𝒘�𝒏 = 𝒘�𝒏−𝟏 + 𝜇 (𝑑[𝑛] − 𝑦[𝑛]) 𝒙𝒏 (2)

where 𝒙𝒏 = [𝑥[𝑛] ⋯ 𝑥[𝑛 − 𝑁 + 1]]𝑇 and 𝜇 is the step
size of the underlying stochastic gradient descent. Assume
some arbitrary initial condition 𝒘�𝟎. Further details
regarding LMS and adaptive filtering can be found in [10].

In this experiment, students deal with the well-known
acoustic echo cancellation problem [11]. We simulate a
device containing a speaker and a microphone, positioned
inside a medium-sized reverberant room. The device’s
microphone picks up a signal 𝑑[𝑛] containing the voice of
two persons speaking simultaneously, where one is located
somewhere in the room (𝑠1), and the other is on the other
side of the phone line, speaking through the device’s
speaker (𝑠2). We denote by ℎ1[𝑛] and ℎ2[𝑛] the Room
Impulse Response vectors (RIRs) modifying the signals

𝑠1[𝑛] and 𝑠2[𝑛], respectively. The aim, as presented to the
students, is to extract the speech of the person located in the
room from the microphone signal 𝑑[𝑛], assuming the signal
𝑥[𝑛] emanating from the device’s speaker is known.
Formally,

𝑥[𝑛] = 𝑠2[𝑛]

𝑑[𝑛] = 𝑠1[𝑛] ∗ ℎ1[𝑛] + 𝑠2[𝑛] ∗ ℎ2[𝑛]
(3)

and the aim is to produce the signal 𝑠1 ∗ ℎ1 as 𝑑[𝑛] − 𝑦[𝑛].
An adaptive filtering approach suits this problem well, as
the signal from the device’s speaker is slightly modified
before being picked up by the microphone due to the room
reflection and absorption properties. We model the
microphone signal as the primary input signal 𝑑[𝑛] and the
device’s speaker signal as the reference signal 𝑥[𝑛], and
attempt to estimate ℎ2 for correct subtraction of 𝑠2 ∗ ℎ2
from the input signal 𝑑[𝑛]. One should note that in this
setup, the RIR does not change over time; thus, there is no
real need for adaptivity, but rather for online operation of
the algorithmic solution.

The first part of the experiment is performed solely on a
host computer, and its main stages are: introduction to echo
cancellation, estimation using LMS, and estimation using
partially fixed-point implementation of LMS. Due to the
feedback present in adaptive filters, they are sensitive to
numerical impreciseness. Such numerical impreciseness
may be easily introduced by inadvertent fixed-point
implementation. Thus, it is didactically interesting to
investigate fixed-point implementation as early as possible
in the experiment. In the introduction stage, students are
presented with the above problem and are encouraged to
analyze it and solve it using naïve measures, such as simple
subtraction of the reference signal 𝑥[𝑛] from the primary
input signal 𝑑[𝑛]. Such an attempt will fail due to above-
mentioned room reverberation, embodied in ℎ2. Following
the failure of the naïve measures, the students implement a
basic version of the LMS algorithm and examine its
performance for the problem at hand. They are guided to
test and find a step size that leads to good performance of
the algorithm for this specific scenario and set of signals.
Then, the students force the implementation to use only
values feasible under a fixed-point regime for the LMS
parameters and intermediates, while the mathematical
operations are still carried out in floating-point. Since we
expect that having students perform the mathematical
operations in fixed-point would be time consuming beyond
the scope of the experiment, we intentionally avoid that. To
the effect of using fixed-point values for parameters and
intermediates, students are instructed to use MATLAB’s
fixed-point toolbox. The students are asked to find suitable
parameters for the fixed-point representation of the
algorithm parameters and intermediates, i.e., word size and
fraction length, bringing into consideration both the
stability and accuracy of the resulting implementation, as
well as its expected computational cost. To this effect, they
are instructed to observe histograms of the values of the
intermediates which arise when running LMS with the

given signals and chosen parameters. In forming this
experiment, we chose a basic version of the LMS algorithm
for several reasons. Most importantly, this algorithm is a
classical and an important archetype in adaptive filtering,
and serves as a necessary basis for more complex adaptive
filtering algorithms. Nevertheless, it is quite simple and
rather intuitive, while the vast majority of the target
students are unfamiliar with it.

Even the most basic version of LMS has two design
parameters: the length of the estimated impulse response 𝑁,
as well as the step size 𝜇. Examining the effect of these
parameters on the behavior of the algorithm is of
educational value. However, in order to remain within the
experiment’s time frame, we chose to examine only the
effect of the step size 𝜇, as we believe understanding its
importance and effect has the highest educational value
among the two. The step size 𝜇 has a critical effect on the
convergence and performance of the LMS algorithm.
Moreover, it is the more difficult parameter to choose. The
students are instructed in the choosing of an appropriate
value for the step size 𝜇. At first, the students witness
divergence of LMS, given an inappropriate step size 𝜇.
Then, we explain to them that 𝜇 should be inversely
proportional to the variance of the input signal 𝜎𝑑2, as well
as to the length of the estimated impulse response 𝑁, i.e.

 𝜇 = 𝜇0
1

𝑁𝜎𝑑2
 (4)

where 𝜇0 is an appropriate constant. Thus, given the
variance of the input signal 𝜎𝑑2, the problem of finding a
good value for μ is transformed into one of finding a good
value for 𝜇0. Given a range of values for 𝜇0, students are
instructed to perform a coarse grid search within that range,
choosing a value for 𝜇0 according to the resulting
performance, as reflected by performance evaluation
measures.

We utilize two performance evaluation measures. One is
qualitative where the students are asked to listen to the
output and evaluate its perceived intelligibility and quality.
The other performance measure is quantitative where, given
a ground-truth signal 𝑠1 ∗ ℎ1, we define

 𝑅[𝑛] = �τ𝑛−1
(𝑠1[𝑘] ∗ ℎ1[𝑘])2

(𝑠2[𝑘] ∗ ℎ2[𝑘] − 𝑦[𝑘])2

𝑛

𝑘=1

 (5)

where τ is an exponential forgetting factor. At every time
instant 𝑛, 𝑅[𝑛] gives an assessment of the SNR up to that
time instant, with the past weighted exponentially to reduce
its importance. The weighting allows for this performance
measure to signify the convergence of the examined
algorithm.

For the two signals, 𝑠1[𝑛] and 𝑠2[𝑛], we use recordings
of two men, with a sample depth of 16 bits. The two signals
are downsampled to 11025 Hz and trimmed to 30 seconds.
The two RIRs, ℎ1 and ℎ2, both of length 4096 samples, are
generated according to the setup depicted in Figure 2, using
publicly available software [12]. In choosing these scenario
parameters, we aim to balance five considerations, with
various trade-offs existing among them:
• Evident convergence of the online algorithm.
• Rate of computations on the target platform.
• Acceptable MATLAB running times (even for naïve

implementations).
• Adequate precision for representing speech signals.
• Realistic room modeling.

We chose a 16-bit sample depth so that the signals
contain only a small quantization noise, as it might hinder
the performance of the echo cancellation. The room
arrangement, including physical size, speaker, and
microphone locations and reverberation time, were chosen
as to reflect a typical office and conference call setting.

3. EMBEDDED IMPLEMENTATION

After completing the first part of the experiment, the
students have gained some practical experience with LMS
using MATLAB, including fixed-point implementation. In
the second part of the experiment, the students implement
an adaptive filter in C on a host computer. Then, they
implement the same adaptive filter on an embedded
platform. During the implementation, the students are
introduced to the different aspects of embedded
development, such as embedded operating systems,
heterogeneous multi-core processors, real-time constraints,
and optimization.

Adaptive Digital
Filter

x[n]

d[n]
+

-
d[n]-y[n]

y[n]

height = 3m

s1, height = 1.4m

microphone, height=1m
s2, height = 1m

4m

4m

phone
unit

0.2m

1m

Figure 1: Adaptive filtering structure.

Figure 2: Room setup simulated in the experiment.

The growing popularity of mobile devices, such as
smartphones and tablets, sets some new requirements for
embedded hardware and software. Such devices are often
used for varied applications that involve different types of
media and that are computationally intensive.
Heterogeneous multi-core SoC processors are a natural
choice for this kind of devices. The OMAP3530 processor
from Texas Instrument [9] is a very popular example of
such a processor. The BeagleBoard [13], which is an
OMAP3530-based development module, makes the perfect
choice for the laboratory target platform, mainly because of
its low cost, availability, state-of-the-art OMAP3 processor,
sufficient peripheral access, and the existence of a large and
active development community. The growing popularity of
embedded Linux and its free licensing makes it the obvious
choice of a target operating system.

Figure 3 depicts the hardware configuration used in the
embedded part of the experiment. A BeagleBoard
(embedded target) is connected to a host computer using a
dedicated Ethernet connection, a serial RS-232 connection,
and a JTAG emulator. The Ethernet connection is the main
connection channel between the host and target, while the
JTAG connection is used for debugging the DSP core of the
target. The serial connection is used by the experiment
instructor for initial setup and maintenance. We equip the
BeagleBoard with a small keyboard and connect it to a
monitor. This is done in order to help the students
understand the ability of the embedded platform to
constitute a standalone product. To allow a pair of students
to cooperate on the experiment easily, without disturbing
others at the lab, we also provide two pairs of headphones
with a signal splitter. The general-purpose processor (GPP)
ARM core of the embedded platform is running embedded
Linux, and the host computer is also running Linux. There
are two main reasons for this choice. First, since the
destination platform is running embedded Linux, and since
for many students this is their first encounter with the Linux
operating system, getting to know it on the host computer
makes for a good kick start. Second, some development and
debugging tools are currently only available for Linux.

Students who perform the experiment are faced not only
with the need to grasp embedded implementation concepts,
but must also deal with new tools. There are many complex
development tools due to the heterogeneous nature of SoC
platforms. To ease coping with this challenge, we have built
a unified development framework. We achieved this by
creating a development environment that produces all

executables during the practical phase of the laboratory,
whether the destination platform is the host computer, the
embedded ARM core, or the embedded ARM core
outsourcing the computationally intensive tasks to the DSP
core. In all three configurations, the students use the same
integrated development environment (Code Composer
Studio [14]) and implement the same functionality in order
to perform acoustic echo cancellation. Figure 4 depicts this
idea. In addition to the unified development framework, we
supply a skeleton of a multimedia application, including
means for input and output, memory management, file
access, inter-processor communication, etc. The students
implement a given function, while the rest of the
application is already implemented. This way, students do
not have to spend time on technical details and can focus on
the algorithm, the concept of fixed-point representation, and
the unique DSP architecture.

 An alternative approach to the skeleton application and
unified development environment that we supply, and that
we don’t use in this experiment, is using Simulink’s
Embedded Coder [15]. The Embedded Coder tool allows
the user to design an algorithm using Simulink, and to
automatically generate a prototype application that runs on
an embedded processor. This approach is easy to implement
in a short amount of time. However, it has three main
drawbacks compared with the approach we use in the
experiment. First, the resulting embedded code is complex
and cannot be edited by a beginner. Second, porting to the
embedded platform is automatic, so the user is not exposed
to key embedded concepts, development environments and
tools. Third, this approach is not common in the industry;
so, using it in the experiment will neither prepare the
students to practical work today, nor in the near future.

During the embedded part of the experiment, we use
Linux input and output redirection capabilities to switch
signal sources and destinations seamlessly. We switch the
input between a file (a signal prepared in advance for the
laboratory) and a microphone, and the output between a file
(for playing the signal in order to check that the result
sounds as expected) and the analog audio output of the
BeagleBoard (in order to hear if the implementation meets
real-time constraints). At first, the students are instructed to

Figure 3: Hardware layout of the embedded part of the
experiment.

Figure 4: The unified development framework created for
this experiment helps students software development by
creating an abstraction over different hardware targets.

DSP ARM x86

Host PCEmbedded TargetHa
rd

w
ar

e
De

ve
lo

pm
en

t
Fr

am
ew

or
k

Ap
pl

ic
at

io
n

Echo Cancellation Code

Unified Development Framework

Compiler Compiler Compiler

compile their code for the ARM core. Students are
surprised to find that, although the application performs
correctly, real-time constraints are not met, meaning that
the audio reproduced in real-time is discontinuous. From
this point on, students are instructed how to evolve the
implementation to meet real-time constraints. The
application displays the processing rate, so that the students
get to see a numeric indication of the improvement in
running time. The students are presented with a simplified
version of a typical DSP optimization process, as described
in [16]. The students are guided to apply the optimization
process until real-time constraints are met. Optimization is
performed through several stages:

• Buffering – A buffer is an area of memory that is
reserved to temporarily store input data. As input is
acquired sample-by-sample, and in order to minimize
system overheads, input samples are loaded into a
buffer and processed together. The students are
introduced to this idea and have to discuss the
tradeoffs of using different buffer sizes.

• Outsourcing computationally intensive tasks to the
DSP core

• Transforming the code to be fixed-point – After
outsourcing part of the code from the ARM to DSP
the core, the students transform this part from
floating-point to fixed-point in order to support the
native numerical representation of the DSP. In this
stage, the scaling factors that were found during first
session of the experiment are used.

• Correct usage of compiler flags, keywords, and
pragma (implementation-dependent) directives – The
students are guided to use different compiler options
and keywords for parallel utilization of the DSP
functional units. High throughput is achieved by usage
of the DSP pipeline. The students analyze compiler
feedback and resulting performance to get insights on
the architecture of the DSP core.

In all parts of the experiment, special emphasis is placed
on teaching the students correct embedded development
habits, such as frequent compilation, testing, and
debugging. General engineering methodologies and
considerations are also presented and practiced.

4. CONCLUSION

In this paper, we have described a novel laboratory
experiment for undergraduate students with only basic
background in signal processing, and none in embedded
systems. During the experiment, the students are exposed to
the basics of adaptive filtering, and to aspects of embedded
signal processing implementation. We use the BeagleBoard
development board as a target platform. This board contains
an OMAP3 system-on-chip, with ARM and DSP cores. The
students are able to use such a complex system in a very
short time (only 8 hours in class) due to a software
framework that was created especially for this purpose. In
order to encourage similar experiments in other
universities, we will supply the full code and

implementation solutions for the experiment upon an
instructor's request.

ACKNOWLEDGMENT

We would like to thank Prof. David Malah, head of SIPL,
and Prof. Israel Cohen for their helpful advice and
comments. Creating the experiment described in this paper
was supported, in part, by Texas Instruments.

REFERENCES

[1] C. Wicks, "Lessons Learned: Teaching Real-time
Signal Processing [DSP Education]," IEEE Signal
Processing Magazine, vol. 26, pp. 181-185, 2009.

[2] N. Peleg, et al., "Benefits of DSP Extra-curricular
Activities: A Look at the Texas Instruments DSP and
Analog Challenge," in IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), Orlando,
2002.

[3] M. Klostermann, et al., "OMAP 3 based Signal
Processing for Biomedical Engineering Teaching," in
17th European Signal Processing Conf. (EUSIPCO),
Glasgow, pp. 495-499, 2009.

[4] R. Chassaing and D. Reay, Digital Signal Processing
and applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed.: Wiley, 2008.

[5] T. Mizrahi, et al., "Real-Time Implementation for
Digital Watermarking in Audio Signals Using
Perceptual Masking," in 3rd European DSP Education
and Research Conf., Paris, 2000.

[6] Y. Kuszpet, et al., "Implementations of H.264/AVC
Baseline Decoder on Different Digital Signal
Processors," in 16th Picture Coding Symposium (PCS),
Lisbon, 2007.

[7] R. Giryes, et al., "Embedded System for 3D Shape
Reconstruction," in 3rd European DSP Education and
Research Symposium (EDERS), Tel-Aviv, pp. 265-
272, 2008.

[8] E. Roichman, et al., "Real-Time Pedestrian Detection
and Tracking," in European DSP Education and
Research Symposium (EDERS), Tel-Aviv, pp. 281-
288, 2008.

[9] OMAP3530/25 Applications Processor (SPRS507F).
http://www.ti.com/product/omap3530: Texas
Instruments, 2008.

[10] S. O. Haykin, Adaptive Filter Theory 4th ed.: Prentice
Hall, 2001.

[11] J. Benesty, et al., Advances in Network and Acoustic
Echo Cancellation: Springer, 2001.

[12] E. A. P. Habets, Room Impulse Response Generator.
http://home.tiscali.nl/ehabets/rir_generator.html, 2010.

[13] BeagleBoard. http://beagleboard.org/.
[14] Code Composer Studio IDE v5.

http://www.ti.com/tool/ccstudio.
[15] Embedded Coder - User Guide (R2012a), MathWorks.

http://www.mathworks.com/products/embedded-
coder/.

[16] P. Yin, Introduction to TMS320C6000 DSP
Optimization (SPRABF2): Texas Instruments 2011.

