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Abstract—In this paper we examine and improve a new 

approach for change detection (introduced in [1]) which is based 
on the appearance and disappearance of 3D line segments as seen 
in a new image. These 3D line segments are estimated from a set 
of learning images taken from arbitrary viewpoints and under 
arbitrary light conditions in an unsupervised manner.  

The main advantage of the proposed method lies in the fact 
that the change detection is performed by comparing line 
segments, and not surfaces or gray levels. Computing 3D surfaces 
in an image can be computationally intensive, and other methods 
such as image subtraction or cross-correlation are sensitive to 
lighting conditions and changes in viewpoints. Moreover, most 
man-made objects such as buildings, cars, and even cities viewed 
from above consist mainly of straight lines, and therefore this 
method is highly applicable for such structures. 

The proposed algorithm first focuses on the reconstruction of a 
set of 3D line segments forming a certain 3D scene using a set of 
2D line segments obtained from the learning images in an 
unsupervised manner, without any prior knowledge on the 
cameras' positions or relative distance. In the change detection 
stage, we use the reconstructed 3D scene of line segments to check 
if changes, such as appearance or disappearance of objects, have 
occurred in a given test image. This test image can be taken from 
arbitrary viewpoint and under arbitrary lighting conditions. Our 
change detection algorithm not only distinguishes between the 
states of "changed" and "not-changed" line segments, it also 
classifies the "changed" line segments as appeared - objects that 
entered the scene in the test image, and disappeared - objects that 
left the 3D scene reconstructed from the lines of the learning 
images.  

I. INTRODUCTION 

In most change detection problems, the goal is to successfully 
reconstruct a 3D scene using   given learning images, and then 
decide if a significant change has taken place based on a     test 
image. The common approach to such problems is to estimate the 3D 
model of the scene using the associated BRDF1 and then make a 
decision based on the knowledge we have on the viewing position 
and lighting conditions of the     image. If there is a significant 
change in the     image compared to the estimated model we 
decide that a change has occurred.  

The estimation of the 3D model is usually done in an unsupervised  
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manner from the   learning images. Note that in this new approach, 
we do not require the learning images to be taken from the same 
viewpoint and in fact they can be taken from arbitrary viewpoints. A 
good example for this can be pictures of an urban scene taken by a 
passing satellite. Each image can be taken from an arbitrary different 
location and viewpoint. Another example is of cars in a parking lot 
captured by different surveillance cameras. The majority of examples 
in this paper will come from the latter scenario. It is important to 
emphasize that we deliberately do not restrict ourselves to the case of 
buildings, which have long and relatively easy to detect straight lines, 
but rather focus on the case of cars, which mainly consist of short 
lines or curves. 

In this paper we examine, generalize and improve a new method 
(introduced in [1]) for reconstructing the 3D model and detecting 
changes – estimating the scene model based only on straight line 
segments. Straight lines appear in almost any man-made objects and 
therefore this method is applicable to a variety of scenarios – 
buildings, cars, urban areas, etc. The major advantage to this 
approach is that working with line segments is computationally less 
complicated than working with the full set of pixels and also less 
sensitive to changes in lighting conditions and viewpoints. Moreover, 
most curves can be decomposed into short straight lines and therefore 
this method will be applicable to these cases as well. 

II. RELATED WORK 

Most earlier work on change detection methods was performed on 
images taken from a stationary camera at a known position. This 
camera produced a sequence of images of the same scene from the 
same viewpoint and the change detection algorithm determined if a 
change has occurred based on these images. In those algorithms a 3D 
model of the scene was not estimated and the change detection was 
based on pixel value (intensity) differences between different images 
in the sequence. The main drawback of such methods is their strong 
sensitivity to illumination and noise. Prominent examples for such 
methods are image differencing and background modeling methods.  

Later on, several methods for dealing with the cases of non-
stationary image sequences arose. A great deal of work has been done 
in the field of moving object detection in video sequences. These 
methods require the images to be taken with short time gaps between 
images and small changes in viewpoint. Therefore, they are not 
compatible to deal with cases in which the distance between 
viewpoints is large and the time between images is long (hours\days). 
There also exist several methods that are based on the reconstruction 
of 3D surfaces. However, these methods are computationally 
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intensive and are sensitive to changes in illumination. They are also 
known to perform poorly around object boundaries. 

Finally, several change detection algorithm make use of straight 
lines in order to detect changes. Such are [2] that make use of 2D line 
segments in their algorithm, but their method is specifically designed 
for aerial images where the images can be registered using an affine 
transformation. Li et al [3] provided a method of detecting urban 
changes from a pair of satellite images by identifying changed line 
segments over time. Their method does not estimate the 3D geometry 
associated with the line segments and takes a pair of satellite (aerial) 
images as input where line matching can be done by estimating the 
homography between the two images. 

Eden and Cooper [1] proposed a solution for the change detection 
problem using 3D reconstructed scene based on line segments. We 
generalize their solution for the uncalibrated set of cameras case, 
without making any prior assumptions on the cameras' positions or 
time between images, and improve performance and robustness by 
adding a K-Nearest Neighbors (KNN) algorithm to the change 
detection decision stage. 

III. RECONSTRUCTING THE 3D SCENE FROM LEARNING IMAGES 

A. Extracting 2D Line Segments in Learning Images 
In order to reconstruct a 3D scene of 3D line segments we first 

need to match 2D line segments across all learning images. This 
procedure imposes two difficulties that are well known in literature - 
efficient extraction of 2D lines in an image and efficient matching of 
2D lines across images. 

When an algorithm for extracting 2D lines such as Hough 
transform is applied on an image, the lines are often fragmented into 
small segments that diverge from the original line segments. In this 
case, instead of getting one 2D line segment representing a real 
straight line, we get several line segments that each represent a part 
of that one straight line. This situation causes many problems when 
later we try to match each segment to a segment in other images. In 
order to try and overcome this difficulty, we divide the learning 
image into a number of equally sized blocks before applying edge 
detection and line extraction. The idea is that now both the edge 
detection algorithm and the line extraction algorithm will work with 
local thresholds instead of global thresholds in the entire image. In 
this way, blocks that are either rich in details (and straight lines) or 
very smooth (almost no lines) will benefit from that change. At the 
end of the procedure the line segments from all the blocks are merged 
into a single array of lines. 

B. Matching 2D Line Segments across Images 
Once an array of lines is extracted from each learning image, a 

method for efficient and reliable matching is needed. Matching of 
line segments across images is known to be a difficult task due to its 
exponential complexity in image number. Therefore, our method uses 
the geometric constraints of epipolar geometry in order to decrease 
that complexity and to get better matching results. 

We estimate the Fundamental matrices,     , in a supervised 
manner for each pair of images    and   , where            . This 
is done by manually selecting and matching points in the images, 
using the camera’s internal parameters for calibration and using the 
Gold Standard method as described in [4]. The projective camera 
matrix    for image    is calculated from a Fundamental matrix     , 
for all          . 

By using the epipolar line constraint on each endpoint of a line 
segment in a certain image, we can eliminate all the 2D lines in the 
other images that are not a good candidate for matching and therefore 
produce optional good candidates for matching. For each line in 
image   , we calculate the two epipolar lines in image    
corresponding to the two line segment endpoints using     , and we 
search for all line segments that lie inside the area between the two 

epipolar lines, in image   , where          . Since the 2D line 
extraction algorithm sometimes yields imperfect lines, and thus 
endpoints, we allow some freedom, and lines with endpoints that lie 
several pixels away from the epipolar lines are also considered good 
candidates. 

Then, for each line in image   , a match score is calculated for all 
good candidates in image    and the corresponding line in image    
will be that with the highest match score.  

Another issue that needs to be considered while matching 2D line 
segments is the fact that methods of measuring correspondence 
between two line segments that differ in angle as a result of different 
point of view in different images, will give problematic results. 
Therefore, in order to overcome this issue, before any attempt to 
calculate a match score for two line segments, both images are 
rectified so that the compared lines are parallel. 

IV. 3D RECONSTRUCTION AND ASSEMBLING WIRE-FRAME 

MODELS 

In order to reconstruct the 3D scene of 3D line segments 
represented in the learning images, our method uses only 2D line 
segments that have matches across at least   learning images, where 
   . This way, many of the 2D line segments that were not 
extracted correctly (too short, fragmented etc.) are eliminated and do 
not take part in the 3D reconstruction. This helps improve the 
accuracy and reliability of the reconstructed 3D scene.  

The reconstruction procedure of 3D lines is done by estimating the 
two points in space, for each 3D line, that corresponds to the line's 
endpoints in   images. Let           be the subset of image 
indices in which the 3D line endpoint   was projected to and found. 
Let the point    be the projected 2D endpoint in image   , where   
 . Due to line extraction errors, the rays back-projected from the 
points    are skew. This means that there will not be a point   which 
exactly satisfies       , where    is the projective camera matrix 
for image    and    , so a least squares solution is estimated. 

Once a set of 3D lines, represented by their endpoints, was 
obtained from the linear reconstruction algorithm, a non-linear 
algorithm is applied in order to minimize the Euclidian distance of 
the projected lines to the original 2D lines in all views. Here we use 
the assumption that for each 3D line segment, a corresponding set of 
2D line segments is available in all views. Each 3D line segment is 
represented by two normalized 3D endpoints, therefore represented 
by six parameters in 3D space.  

In order to solve this minimization problem we use the Nelder-
Mead method and the following cost function as used in [1]  
 
                     ∑   (      )   ∑   (       )  
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where L is the linearly reconstructed 3D line,      is the improved 
3D line segment of  ,    is the corresponding 2D line segment in 
image   ,     is the projection of L to image    as an infinite line, and      
is the projection of L to image    as a finite line segment. 
  (      ) is the distance metric between an infinite line and a line 

segment and is computed as seen in the following formula 
 

  (    )  √
 
| |∑    (    )    (2) 

 
where    is the perpendicular distance of a point   to an infinite 2D 
line. The line segment   is divided to points   and an average of the 
point to line distances is calculated. 
  (       ) is the distance metric between two line segments. It is 

computed in the following manner 
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where     is the minimum distance between a point and a line 
segment. Both line segments   and     are divided into points   and 
    and an average of the point-to-line-segment distances is calculated 
for both lines. 
  appearing in Eq. (1)  is used to control the convergence of the 

local search algorithm.   is selected to be a positive number close to 
zero (         ). In this way, at first the algorithm tries to 
converge to the correct infinite line and after that the second part in 
the cost function (succeeded by  ) becomes more dominate and 
search for the optimal endpoints for the 3D line segment. Example of 
the improvement of the non-linear algorithm is shown in Figure 1. 

In the case of a scene of cars in a parking lot, after the 3D 
reconstruction, the models of the cars were assembled from 
individual lines and there were still some errors due to degeneracies 
of some lines due to their 3D orientation with respect to the cameras’ 
viewpoint. This usually occurs when a 3D line segment and the 
camera center lie on the same plane. In addition, since a certain line 
in one picture can have a different length from its correspondent line 
in some other image due to line extraction imperfections, additional 
constraints are added in order to overcome those errors. 

We use the geometrical properties of the cars, having obvious wire 
frame outlines, in order to add these constraints. Line endpoints that 
qualify a distance criterion to a different line endpoint in 3D, as well 
as a distance criterion in all three learning images, can be assumed to 
be originated from two attached lines in the original scene, having a 
mutual endpoint. We use a pair-wise checking algorithm, and define 
two radios thresholds – for 3D space and for 2D space for all line 
segment endpoints. Since small errors in the 2D line segment 
extractions can lead to large error in 3D space, we choose a larger 
threshold for 3D space with respect to the scene, than the threshold 
for 2D space with respect to the scene. We do not use any prior 
information, assumptions or model for the structure of the cars, but 
solely depend on the described criterions. Using an iterative 
algorithm, endpoints are joined together until there are no such points 
that satisfy the criterions. 

Each wire-frame model is formed as an undirected graph 
  (   ) where the set of edges represent 3D line segments and the 
vertices represent their endpoints. Instead of minimizing the objective 
function for each line segment separately, here we minimize an 
objective function for all line edges in the wire-frame graph model. 
The cost function for wire-frame minimization problem is the 
following formula also used in [1] 

 
               ∑ (∑   (       

 ) 
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where    is the number of vertices in a wire-frame model and     is 
the line in image    associated with edge     in graph   (   ). 
  ,   are as defined in Eq. (2) and Eq. (3). 

As in the non-linear reconstruction, we also use here the Nelder-
Mead optimization algorithm to find the vertices that minimize the 
cost function, constraining together sets of line segments and solving 
this optimization algorithm for every set that hold the closeness 
constraints.  

 

 
Fig. 1. (A)  The 3D reconstruction of two cars after using linear 

reconstruction only. (B) The same reconstruction after applying the 
non-linear algorithm. Notice the improvement of the reconstructed 
lines marked by a red arrow. 

V. CHANGE DETECTION 

A. The Concept of the Proposed Algorithm 
Our change detection algorithm is based on the appearance and 

disappearance of line segments throughout an image sequence. In our 
change detection problem, given a new test image the algorithm must 
decide whether a significant new object has appeared in the region or 
whether an object in the region has left based on the 3D scene 
reconstructed from the line segments from the learning images as in 
section III. The output of this algorithm is a visual one that assists the 
viewer by marking the 2D lines in the test image in different colors 
according to changed or unchanged state.  

The test image can be taken from an arbitrary viewpoint, different 
from all viewpoints of the learning images. We estimate the 3D scene 
which consists only of long and short straight lines, since estimating 
the complete 3D surface under varying illumination conditions and in 
the existence of specular highlights is often impractical. For man-
made objects and for general 3D curves, straight line approximations 
are usually appropriate and effective. Our method detects changes by 
interpreting reconstructed 3D line segments and 2D line segments 
detected in learning and test images. 

Our change detection method is composed of two procedures that 
eventually assign a state to each 2D line extracted in the test image 
(the     image) and for each 3D line in the reconstructed scene. 
The possible states for the 2D lines are "not-changed" or "changed", 
when "changed" means that this line does not appear in the 3D scene 
– therefore it's a new line. The possible states for the 3D lines are also 
"not-changed" and "changed", when this time "changed" means that 
the 3D line does not appear in the new image and therefore the line 
belongs to an object that left the scene. 

B. Change Detection Tests for 2D Line Segments 

Apply Test
T1

Mark as
“not-

changed”

Apply Test
T2

Mark as
“not-

changed”

Mark as
“changed

(new)”

T1<t1

T1>t1
Pass

Fail

2D lines
of test

 
Fig. 2. Tests T1 and T2 applied to determine the state of each 2D 

line in the new test image 

Once a new test image is given, all 2D line segments in that image 
are extracted in the same manner as described in section III.A. In 
order to determine the state of each 2D line extracted in the test 
image, we use two statistical test T1 and T2 and the procedure that 
appears in Figure 2 and used in [1].   

First we apply test T1 for every 2D line segment extracted from 
the test image. This test is designed to check how well a 2D line in 
the test image fits the reconstructed 3D scene. If for a specific 2D line 
in the test image exists a close enough projected 2D line from the 3D 
scene then this line is not new – it existed also in the learning images 
or else it wouldn't have appeared in the 3D reconstruction. If, 
however, such close enough projection does not exist then this means 
the line does not appear in the 3D scene and therefore it could belong 
to a new object that appeared in the test image.  

In order to find the closest projected 2D line we used Eq. (3) 
where here    is the 2D line segment in the test image and      is the 
projected 2D line segment. After calculating    (       ) for all 
projected lines, if the distance of the closest projection is less than a 
   threshold, the algorithm marks the state of this 2D line as "not-
changed". If the distance is greater than a    threshold, we apply T2 
test for that line.  
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A demonstration of test T1 can be seen in Figure 3. In this 
example the lines that were marked as "not-changed" (red lines) are 
indeed only the ones that are relatively close to the projections from 
the 3D scene (green lines). The rest of the 2D lines are marked as 
"changed" (blue lines) and indeed we can see that they do not appear 
in the reconstructed 3D scene of line segments (not close to any of 
the green lines).  

After applying test T1 for every 2D line extracted in the test image 
we turn to apply test T2 if necessary. T2 test is applied to all the 2D 
lines in the test image that were not marked as "not-changed" by test 
T1. Since not all the 2D lines extracted in the learning images took 
part in the reconstruction of the 3D scene (only those 2D lines that 
had a good match across all learning images), there could also be 2D 
lines in the test image that do not appear in the 3D scene but do 
appear in the learning images, and therefore should be marked as 
"not-changed". Since T1 is not able to check such cases, we apply 
T2.  

 

 
Fig. 3. Results of test T1. 

In T2 we look for the matching 2D line in learning image    which 
camera's center is closest to the camera’s center of the test image. For 
every 2D line in image    image we calculate the two epipolar lines 
mapped in the test image by the fundamental matrix between the test 
image and image   . If a line segment in the test image with endpoints 
  and   is found, such that endpoint  ’s Euclidean distance to one of 
the epipolar line is smaller than threshold     and endpoint  ’s 
Euclidean distance to the other epipolar line is smaller than threshold 
   , and the offset between the 2D location of the two lines is smaller 
than threshold    , the line is marked as “not-changed”. 

After applying tests T1 and T2 each 2D line in the test image was 
classified as "not-changed" and "changed", where "changed" in this 
case means that the line belongs to a new object that entered the 
scene.  

C. Change Detection Test for 3D Lines  

Apply Test
T3

Mark as
“not-changed”

Mark as
“changed
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T3<t3

T3>t3

3D lines of
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Fig. 4. Test T3 applied to determine the "state" of each 3D line 

Test T3, as shown in Figure 4 and also used in [1], is applied on 
the 3D lines comprising the reconstructed scene from section IV in 
order to discover if an object has left the scene in the new test image. 
For each 3D line in the reconstructed scene we check if there exists a 

close enough 2D line in the test image. If such 2D line exists it means 
that the object did not leave the scene and that 3D line is marked as 
"not-changed". If such 2D line does not exist it means that the object 
has left the scene and this line is marked as "changed".  

In order to find if a close enough 2D line exists in the test image, 
we use the projective camera matrix of the test image and project the 
3D line to the test image. Then we use Eq. (3) to calculate the 
distance of the projected 3D line to all 2D lines in the test image. If 
the closest distance is lower than a threshold     the 3D line is marked 
as "not-changed". If the minimal distance is greater than threshold    
then the state of this 3D line is marked as "changed" (disappeared). 
This procedure is performed for all 3D lines in the reconstructed 
scene. 

D. Improving Results with KNN 
As described earlier, each of the tests T1, T2 and T3 works with a 

user defined threshold (  ,    ,     and    accordingly). It is obvious 
that in the vast majority of the cases one cannot find thresholds   , 
   ,     and    such that the change detection procedure will have no 
clutter (lines that were marked as "changed" when in fact they are not 
and vice versa).  

Therefore, after applying the tests T1, T2 and T3 we also use the 
KNN algorithm to reduce this clutter. Here we use the assumption 
that after test T1, T2 and T3 most of the lines received the correct 
state and therefore if we will apply the KNN algorithm line with 
wrong states will receive the correct one.  

In majority of the cases the lines that get the wrong state label are 
the ones that are marked "changed" when in fact they are not 
changed. This is due to the fact that there are more lines extracted in 
the test image than lines that appear in the 3D scene. Therefore, we 
only apply the KNN algorithm to lines that were marked "changed" 
by the previous tests. For each 2D line in the test image and 3D line 
in the reconstructed scene, that is marked as "changed", we find the 
closest   lines to that line (  is odd) using 2D and 3D distance 
metrics respectively. We give the line the state of the majority of 

closest lines ( ⌊  ⌋). We find that in our test images the range of   

between 9-15 yields the best results. 

VI. EXPERIMENTAL RESULTS 

We will now present the results of our method on a learning 
sequence of three images (   ), two different test images, and 
using lines matched in three images (   ). The new test images 
were taken from an arbitrary viewpoint (different from all the 
viewpoints of the learning images) and not in the same time of day, 
meaning different lighting conditions. We experimented with two test 
images – one with an object that left the scene and one with a new 
object that entered the scene.  

Figure 5 shows the results for the test image in which an object has 
left the scene. Tests T1 and T2 correctly identified the new car that 
entered the scene and all the cars that existed in the learning images 
as well. In fact, the new car only entered the scene because of the 
rotation in viewpoint between the learning set and the test image and 
not because it actually moved into the scene. However, our method is 
not meant to distinguish between such cases and the identification is 
correct. Moreover, we can see that after applying tests T1 and T2 
there is still some clutter on the left side of the image, where some of 
the lines were wrongly marked as "changed (new)". After applying 
the KNN algorithm most of this clutter was fixed (except for one 
line).  

Figure 6 shows the results for the test image in which a new object 
has entered the scene. Tests T1 and T2 correctly identified both new 
cars that entered the scene and all the cars that existed in the learning 
images as well. The lower new car is in fact a new car that moved 
into the scene. As shown in Figure 6, our algorithm does not 

state of 2D lines in image n+1 after T1 test
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distinguish between the two cars and marks them both as "changed 
(new)" correctly. 

Moreover, after applying tests T1 and T2 there is still some clutter 
on the left side of the image, where some of the lines were wrongly 
marked as "changed (new)". After we applied the KNN algorithm 
most of this clutter was fixed (except for one line). 

In Figure 7 it can be seen that test T3 correctly identified the 
newly entered car as "not-changed", where clutter (marked by 
arrows) is being dealt with using the KNN phase. 

 

 
Fig. 5. Experimental results for a test image with a car leaving 

the scene. (A) Test Image (B) Ground truth for test image (C) Results 
after T1 and T2 tests (D) Results after KNN improvement. 

 
Fig. 6. Experimental results for a test image with a car entering 

the scene. (A) Test Image (B) Ground truth for test image (C) Results 
after T1 and T2 tests (D) Results after KNN improvement. 

 
Fig. 7. Results of T3 and KNN for the car that entered the scene, 

Blue lines – “changed (new)”,Red lines – “not changed”.(A) After 
T3 test (B) KNN improved results, corrected lines marked by arrows. 

VII. CONCLUSION 

In this paper we presented a method for change detection based on 
3D line segments. This method is robust and can be applied to images 
taken from arbitrary viewing directions, at different times and under 
varying illumination conditions, and to a variety of scenes. Moreover, 
this method does not require any prior knowledge on cameras' 
positions or relative distances.  

Our method not only detects changes that occurred in a given test 
image, it also distinguishes between changes that are caused by new 
objects that entered the scene and changes that are caused by objects 
that left the scene. Our method has been shown to detect changes 
with high accuracy, on two change detection experiments. Those 
experiments indicate that our algorithm is capable of efficiently 
matching and accurately reconstructing small and large line 
segments, and detecting changes (and their types) by interpreting 2D 
and 3D line segments. Our 3D line segment reconstruction algorithm, 
which uses the geometric constraints imposed by the scene in both 
2D and 3D improve the accuracy of existing individual 3D line 
segment reconstruction techniques. 
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