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Abstract—Infrared (IR) imaging has a wide variety of 

applications such as night vision detection and tracking, 
meteorology radiometers and spectroscopy techniques. An 
infrared image is a monochrome image, usually presented in 
grayscale. It has been proved that colorization of IR images can 
reduce human error and speed up reaction time. Most previously 
suggested coloring methods use a reference color image, whose 
characteristic features differ drastically from IR ones. These 
differences make those features less pertinent to the coloring 
process. In this paper, we present a novel texture-based method 
for automatically coloring IR images. The method uses a 
reference (source) color image, which is selected from a database, 
built in advance containing various natural scenes. The source 
image is selected using a texture-matching algorithm that 
searches for a resemblance to the IR (target) image. The source 
and target images are divided into texture-based segments and a 
color segment best match is found for every IR segment. The 
coloring process is performed for each pair of IR-color segments, 
and exploits global as well as local features. Results show that our 
method produces more natural-looking images than achieved 
heretofore.  

 
Index Terms—infrared, colorization, texture. 

I. INTRODUCTION 

Infrared (IR) imaging processes thermal emissions from 
various surroundings, producing a powerful vision system that 
overcomes some of the natural limits of human sight. 
Exploitation of such data is extremely useful for functioning at 
night time or in other poorly lighted conditions. Today, IR 
systems are more common than ever before because of 
decreasing prices. They are found in military as well as 
civilian tracking and surveillance devices. Among the IR 
imaging systems, there are two types of devices: Those that 
have single-band sensors sensitive to a limited range of 
emitted radiation wavelengths and those that exploit a larger 
portion of the electromagnetic spectrum, combining more than 
one band. In this work, we focus on single-band systems, 
which are more commonly used due to their lower prices. 

As the IR acquired image is based on temperature 
differences only, it is monochromatic and usually presented in 
grayscale. That aspect is a serious drawback, since the purpose 
of these systems is to facilitate clear and quick recognition of 
their surroundings, which cannot always be achieved using a 
grayscale image. Indeed, experimental data indicate that object 

recognition is dependent on stored knowledge of the object’s 
chromatic characteristics [1]. It was shown [2] that the optimal 
reaction time and maximum accuracy in natural scene imagery 
are achieved for daytime natural colors, better than their 
grayscale version. In [3] it was suggested that the use of false 
colored night vision images (created by adding colors, which 
are not necessarily the original ones, to the grayscale image) 
significantly improves scene comprehension and reaction 
times in tasks that involve scene segmentation and 
classification. However, color mapping that produces 
counterintuitive (unnatural-looking) results may lead to 
inferior performance compared even with grayscale images. 
Thus, it is critical to give night vision imagery an intuitively 
meaningful and consistently-colored appearance [4]. 

IR images differ substantially from color images. A color 
camera gathers visible light reflected off objects and captures 
it as a color image. On the other hand, IR imaging processes 
thermal radiation, producing a grayscale image of captured 
item’s temperature. This inherent distinction between the 
nature of color and IR images is a major challenge when one 
goes to colorize an IR image. Another main factor in this 
process that needs to be considered is the lack of an 
established objective error measure, since a single grayscale 
value can be matched, with no clear mapping criterion, to 
several different colors. 

A prominent method for the colorization of single-band IR 
images was introduced by Toet [5]. In this method, a reference 
(source) color image is used to globally match between IR and 
color pixels. First, a group of color pixels is randomly selected 
to form a codebook. Next, the first and second-order statistics 
(mean and standard deviation) of the codebook’s pixels are 
found and matched to those of every IR pixel followed by 
transforming corresponding chromaticity in a decorrelated 
color space. The reference image does not need to be of the 
exact scene; however, it should resemble the IR image and 
contain similar properties. Toet’s method has several 
drawbacks. Firstly, the source color image is selected 
manually, which is relatively cumbrous and may be 
impractical for usage in situations with varying scenery. 
Secondly, an inconsistency in object’s colors can be produced 
due to the usage of global information when matching IR and 
color pixels (i.e., Color from different parts of the source 
image can be found out of context in the rendered outcome). 
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Thirdly, the pixel-matching process relies on features that are 
not necessarily correlated between the color image and the IR 
image. On the contrary, textural features are similarly 
expressed in both images, and similar texture tends to have 
similar colors.  

  Another approach for coloring IR images, based on Toet, 
has been developed by Sun et al [6]. In their method, different 
textural characteristics are used to find similar pixels in the 
source and target images, leading to a match of chromatic 
values. On the other hand, their process of matching the pixels 
involves random selection as in [5].  

Although this paper deals with single-band IR images, a 
few methods designed for multi-band IR sensors outcome, are 
worthwhile mentioning. Hogervorst [7] proposed to map the 
different IR bands to RGB channels creating a false color 
image and by usage of a reference color image, a chromatic 
transformation can be achieved. A similar method [8] offers to 
use a color segment database (i.e., sky, water, roads) instead of 
a reference image. Applying pattern recognition and histogram 
distribution, a classification process is performed on each IR 
segment and chromatic values can be transferred from the best 
matched color segment. 

 Several more methods designed for grayscale images, that 
do not rely on a color image as a source, have been proposed 
by Levin el al [9] and by Abdulhalim [10]. Levin's method 
requires insertion of color scribbles, indicating for a quadratic 
cost function-based algorithm, the appropriate colors and their 
boundaries. AbdulHalim proposed usage of a color-pixel data 
base allowing Toet's algorithm to pick the best match per IR 
pixel. 

In this paper, we introduce an innovate method for coloring 
single-band IR images. The source image is selected from a 
database of color images by a texture-matching algorithm. 
Following, the source and target images are transformed into 
decorrelated color space, where the IR is partially transform 
because it has only luminance values. Afterwards, the source 
and target images are texture-segmented, and a best color 
segment match is found per IR segment. The color pixels are 
then clustered, and their texture characteristics are compared 
to those of the pixels in the matched IR segment. Finally, the 

chromatic information is transferred and the image is 
transformed back to RGB. This process is depicted in Figure 
1. 

This paper is organized as follows: Section II describes the 
proposed coloring technique; section III presents results 
compared to other methods; finally, section IV concludes.  

II. INFRARED COLORIZATION 

A. Overview 
In light of the inherent differences existing between IR and 

color images, texture features appear to be a promising tool in 
the matching process of both images. The proposed technique 
exploits those properties at three distinct levels: The image 
level, the image segments level and the pixel level. First, the 
source image is automatically selected based on the textures in 
the scenery. Then, the IR image is colorized segment-wise, 
with each segment composed mainly of one prominent texture, 
and finally every pixel inherits chromatic values from the 
source image based on local features that are mostly texture-
based. Let us review the considerations lying behing each of 
those steps of the algorithm. In the first level, we manipulate 
the textural information to select a source image similar to the 
IR one in terms of scenery. Since we do not have color data in 
the IR image, we consider the information obtained from IR 
radiance as if it is regular image brightness. We then collect 
image statistics in different regions corresponding to different 
textures. This textural information allows us to select from a 
large database a source image whose brightness information 
resembles the IR target image. In the first stage, we use a more 
accurate, but computationally intensive descriptor, since most 
computations at this stage are performed off-line.  

The second level applies to textures in image or image 
segments as well, but the goal here is to match segments with 
similar textures. We require a texture-based descriptor that is 
capable of distinguishing one texture from others and to 
enable matching each segment in the IR image to one from the 
source color image. Since the matching is now performed over 
a limited number of texture segments, we choose a lighter and 
more computationally efficient descriptor, which is better 

Figure 1 – Overview scheme of the algorithm. The solid arrow lines represent the flow of the IR image; the dashed arrow lines represent the 
flow of the color reference image. 

2



adapted to online computation. After the segment matching 
process is complete, we now use texture features at the pixel 
level in each segment of the IR image. In this stage, each IR 
pixel is matched to a color one from the corresponding color 
segment. For that task, we need a descriptor of a more local 
nature that has low computation costs to allow online work at 
the pixel level. In the following sections, we present in more 
detail the three texture descriptors that are suited for the 
texture matching tasks mentioned above. 

 

B. Source Selection 
 The source selection process aims to match the target IR 

image with a corresponding reference color image that 
resembles the target in terms of scenery. The selection process 
is based on a global texture descriptor that uses multifractal 
analysis in a multi-orientation wavelet pyramid [11]. The 
descriptor combines information from both spatial and 
frequency domains and has shown in previous work strong 
ability for representing natural textures because of their fractal 
structures [12][13][14]. In order to capture the features in 
textures in different spatial locations, the image is divided into 
sub-images. A division to 16 sub-images was chosen so that 
each sub-image contains roughly one main texture element. 
Every sub-image I, is used to generate a descriptor as follows: 
A discrete wavelet transform (DWT) is computed by, 
decomposing I into one low-level frequency channel       
with the coarsest scale and multiple high frequency channels 
of multiple scales                         where J is 
the number of scales (We use J=3 as in [7]). In order to 
classify textures efficiently, a multifractal spectrum analysis 
(MFSA) is used as a statistical measure of the wavelet 
coefficients. MFSA was originally used in the study of fractal 
objects [15], where it serves to analyze complex or irregular 
geometric objects. The main aim behind fractal analysis is to 
analyze the object in terms of irregularity. In our case, we use 
plain fractal dimension, which is a statistical measurement of 
how a given point set (E) appears to fill the space as one 
zooms towards finer scales. A common approximation for this 
measure is called the box-counting fractal dimension, which is 
defined as follows: Given a 2D space covered by a mesh of 
   , and a set of points      that is on the mesh, we 

define the number         as the number of 
 
  mesh squares 

that intersect with E for i = 1,2,3,…n . The definition of 
fractal dimension when using the box-counting method is then 
given by: 

  
 
 

log# ,
dim lim

log
.i n

E
E

i
n

i
n




 (1) 

  
One prominent advantage of the MFSA is that it classifies 
well objects of fractal nature, which is the case in many 
natural textures. Secondly, it is scale invariant, since it 
measures differences in intersections between several scales. 

In order to save real time computations, the database is 

processed off-line, and the descriptor for every image in the 
database is a vector of its sub-images fractal features.  The IR 
image is processed in a similar way to generate a descriptor 
vector. The source selection is then performed by finding the 
color vector that yields a minimum square error. 

   

C. Color Space Transformation 
In order to avoid artificial colorization effects when we 

transfer the chromatic values, the process has to be performed 
in a space in which the chromatic and luminance channels are 
all uncorrelated. Following the work of Ruderman’s [16], we 
use the lαβ decorrelated color space, where l stands for the 
luminance channel and α,β for the chromatic channels. The 
transformation between RGB and lαβ is the same as in 
Reinhard’s work [17], where he used Ruderman discoveries to 
perform simple tasks of colorization. In the case of the IR 
image, we compute only the luminance l using the IR intensity 
for all three RGB channels. 

 

D. Image Segmentation 
In order to allow the colorization process to exploit regional 

information, we segment both images and match each IR 
segment to a color one. The colorization will then be 
performed on each pair of matched segments separately. We 
propose to segment the images according to texture properties. 
A texture segment is composed of pixels of similar texture and 
adjacent coordinates (x,y), in the image. The segmentation of 
the color image is constructed by clustering the image pixels 
according to their lαβ and (x,y) coordinates. Dividing into 16 
segments is usually enough to obtain one prominent texture in 
each segment. Since the IR is monochromatic, a simplified 
version of the same method is used. This time, the only 
parameters used for the segmentation are the luminance value 
and the (x,y) coordinates. 

Prior to the color transformation, we need to allocate a 
corresponding segment to each IR segment in the color image. 
For example, although both sky and grass could have a small 
area with similar smoothness, i.e., the same local properties, 
the grass is less probable to inheriting the sky’s blue colors 
when segment matching is done beforehand. To perform the 
allocation, textural representation of each segment is extracted 
by using the histogram of gradients (HOG) method [18]. For 
each pixel in the segment, gradients of its neighborhood are 
computed, and a histogram vector of those gradients’ 
directions represents the segment. The HOG method 
corresponds to the second level of texture descriptors, which 
we introduced in section II.A. It captures the directivity and 
periodicity of the texture in a way that is able to characterize 
textures when the number of textures is limited, as in our case. 
The HOG process is repeated for all segments in both IR and 
color images, yielding representing vectors for all the 
segments. To complete this stage we match every vector of an 
IR segment to a vector of a color segment according to 
minimal Euclidean distance. 
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E. Constructing Chromatic Codebook   
Once the segment matching between the color and the IR 

images is done, we construct a chromatic codebook. The 
codebook is constructed for every segment by clustering the 
segment colors according to chromaticity and local pixel 
statistics, and selecting color representatives. We used the k-
means clustering method [19][20], with K=20, which proved 
to be sufficient for representing the colors of a segment. The 
clustering process is performed not only on the chromaticity 
values but also on the textural properties of the pixels for two 
reasons. Firstly, the same color may appear in different places 
in the texture, usually with a different value of luminance. 
Thus, color information is not enough to represent the 
segment. Secondly, the IR segments have no chromaticity, and 
the only mutual information for correct allocation from the 
color image is derived by using the brightness local statistics 
(i.e., texture) for both images. The local textural properties we 
used for clustering are pixel local mean, range, and standard 
deviation, computed in the pixel neighborhood, and also a 
local binary pattern (LBP) descriptor [21]. The LBP maps the 
local gradients of each pixel into a single equivalent value, and 
hence strongly represents the local textural property by a 
single value. We chose the LBP descriptor over the HOG one 
or other texture features at this stage of the algorithm because 
of its low computation cost. The basic LBP value for each 
pixel is computed as follows: 
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Where   is the value of the pixel of interest,    is a binary 
value (has the value of 1 if      and 0 otherwise), and   is 
the number of pixels in neighborhood of the pixel  . Here, we 
use    , and the pixels are ordered clockwise, where i=0 
corresponds to the top left most pixel. The outcome of the 
codebook creation is a representative matrix that contains 
sufficient color values in its rows to span the chromatic values 
(α,β) of the segment, while the rest of the columns are the 
local features parameters of each representative in the 
codebook. The structure of the codebook is as follows: 
 
{α values , β values, mean, range, standard deviation, LBP} 
 

F. Pixels Matching and Chroma Transformation 
 To complete the colorization process, for each IR segment 

we use the codebook of the corresponding color segment in 
order to match the IR image pixels with their most similar 
codebook textural values. We then transfer the matched 
chromatic values, α and β, to the IR pixel. The original 
luminance values of the IR image are kept, and the result is a 
colored IR image in lαβ color space. Finally, the IR colored 
image is transformed back to the RGB color space.   

III. SIMULATION RESULTS 

For our experiments we used images of natural scenes, with 
a resolution of 640*480 pixels. The database contains six 
groups of common natural scene images that were collected 

from the Internet: (1) forest, (2) grass and trees, (3) hills, (4) 
savannah, (5) tundra and (6) woods. Each group contains 10 
images, for a sum total of 60 images. 

Some of the IR images (rows 1-3 of Fig. 2) that were used 
were acquired by an uncooled thermal IR single-band Eyer25-
Opgal camera. The scenes were taken from distances of about 
10 to 40 meters during Israeli midsummer’s day. The rest of 
the images are from the OTCBVS database [22]. 

Quality assessment of fake colorization is subjective and 
hard to quantify. In an attempt to perform a relevant 
comparison with previous works, we define the following 
criteria of quality: (1) similar objects retain similar colors, (2) 
objects do not obtain unnatural colors, i.e., red sky, blue trees, 
etc.  

Figure 2 presents several examples of colorization results. 
Columns (a) and (b) depict the IR target image and the 
selected color source image respectively, column (c) is the 
result obtained by using Toet’s single-band algorithm for 
colorization [5], and column (d) corresponds to results 
obtained by using the proposed colorization technique. It can 
be seen that the selected source images have a high degree of 
resemblance to the IR images in their type of scenery and 
textural content. Additionally, in terms of the quality criteria 
we defined, we have found that our colorization process yields 
more natural colorization results, and that objects of similar 
texture retain similar colors. A good example for the 
algorithm’s robustness to outliers can be seen in the last row 
image, in which Toet’s technique allowed the road to be 
painted blue, while our algorithm gave the road its natural 
gray color. 

IV. CONCLUSION 

In this paper, we have proposed a novel method for 
colorizing single-band IR images, based on the colors of an 
image with similar textures. There are three main novelties in 
the proposed technique. (1) The selection of the color source 
image is performed automatically from a database of color 
images. (2) Colorization is performed according to a local 
chromatic codebook, established by texture-based 
segmentation. (3) Local textural features are used for pixel 
matching. We found that the use of texture-based 
segmentation narrows down the possible matching selection, 
and therefore local characteristics can be better expressed. In 
order to check our method’s effectiveness we compared our 
results with [5] algorithms’ outcomes and our results show a 
more natural appearance. 
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(a) (b) (c) (d) 
Figure 2- (a) target IR images, (b) color source image, (c) colorization obtained of [5], (d) colorization obtained with proposed technique. The 
results show that our proposed technique indeed achieve more natural coloring. 
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