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Abstract—Image registration is a challenging task in the 
world of medical imaging. Particularly, accurate edge 
registration plays a central role in a variety of clinical 
conditions. The Modality Independent Neighbourhood 
Descriptor (MIND) demonstrates state of the art alignment, 
based on the image self-similarity. However, this method 
appears to be less accurate regarding edge registration. 

In this work, we propose a new registration method, 
incorporating gradient intensity and MIND self-similarity 
metric. Experimental results show the superiority of this 
method in edge registration tasks, while preserving the original 
MIND performance for other image features and textures. 

Index Terms—Image registration, multi-modal similarity 
metric, self-similarity, image gradient. 

I. INTRODUCTION  
Image registration aims to find an optimal 

transformation, aligning two or more images taken at 
different times, different points of view or by different 
sensors. Particularly, in medical applications it is frequently 
desired to register images taken in different modalities, such 
as computed tomography (CT), magnetic resonance imaging 
(MRI) and ultrasound. 

Many approaches for image registration have been 
introduced thus far (see comprehensive survey in [14] and 
references therein). Mutual information (MI) has been 
widely applied to medical image registration [10], [15]. MI 
aims to find a statistical correlation across images and 
thereby maximizes the amount of shared information 
between two images. Several extensions to MI have been 
proposed, such as normalized mutual information [8], 
conditional mutual information [9] and a combination of 
gradient intensity and mutual information [12]. A different 
approach relies on structural representations of the images, 
such as entropy and Laplacian [16], edge detection [6], 
similarity-sensitive hashing [2] and morphological tools 
characterization [5], [8]. 

The Modality Independent Neighbourhood Descriptor 
(MIND) proposes a multi-modal registration algorithm based 
on the assumption that the local structure is shared across 
modalities [7]. Although MIND achieves accurate and 
reliable alignments in a variety of registration tasks, 
numerical experiments show that MIND is less accurate for 
edge alignment, which may be substantial for several clinical 
conditions, including human organ recognition, tumor 

detection and disease diagnosis (e.g. Crohn’s disease, 
Multiple Sclerosis). For instance, in Crohn’s syndrome, 
accurate detection of the bowel wall is highly important for 
grading the severity of the disease activity [17]. Accurate 
estimation of tumor size and shape is crucial for determining 
the treatment strategy [13]. 

This work suggests a new image registration method, 
called Gradient MIND (G-MIND), incorporating gradient 
intensity and MIND descriptor. Leveraging the fact that the 
gradient emphasizes sharp brightness changes and 
discontinuities, our method achieves a significant 
improvement in edge preserving. 

We show by numerical experiments on synthetic and real 
medical images that the G-MIND outperforms MIND in the 
accuracy of edge alignment, while preserving MIND 
performance for other features and textures. 

The rest of the paper is organized as follows: Sections II 
and III present MIND and G-MIND algorithms respectively, 
Section IV is devoted to numerical experiments and 
ultimately Section V concludes the paper.  

II. MODALITY INDEPENDENT NEIGHBOURHOOD 
DESCRIPTOR  

The Modality Independent Neighbourhood Descriptor 
(MIND) proposes a deformable registration method between 
two source images. The algorithm is composed of two steps. 
First, for each image, a descriptor is generated, relying on the 
self-similarity properties within small patches. Next, the 
similarity between the two images is defined by the 
difference between their descriptors, and an optimization 
algorithm is applied to minimize it. 

The descriptor aims to find an image representation, 
which is modality-independent, relying on the assumption 
that a local structure of the underlying object is shared across 
modalities. In this work we focus on two-dimensional 
images, however, MIND can be easily extended to higher-
dimensions. 

Before presenting MIND, we introduce two definitions. 
Dp(I,X1,X2) is the intensity distance between two pixels X1 
and X2 of an image I, defined as the sum of squared 
differences between the intensity of all the pixels in the two 
patches of size (2P+1)2, centered around X1 and X2. Namely, 
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for some P . The variance V(I,Xc) is the mean of the 
distances between the pixel Xc and its four neighbours: 
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Equipped with the definitions in Equations 1 and 2, the 
MIND descriptor for a two-dimensional image I, at a pixel 
Xc with a given neighbour r is defined as: 
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where R defines a search region centered at the pixel Xc and 
n is a normalization constant (so that the maximum value is 
1). 

The complete MIND descriptor associates a self-
similarity vector of size |R| for each pixel X in the image, 
calculated as in Equation 3. The similarity metric between 
two images I, J is defined as the sum of absolute differences 
between their corresponding MIND descriptors: 
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Subsequently, the Gauss-Newton optimization 
framework is used in order to minimize the similarity metric 
in Equation 4 (see Section 4.5 in [14]). By minimizing S(X), 
a registration displacement U=(ux,uy)T is obtained. The 
displacement can be formulated as: 

 '  X X U  

where X=(x, y)T is transformed to the location X'=(x', y')T. 
By finding the displacements between images I and J, 

both the forward transformation of image I to image J, and 
the backward transformation of image J to image I are 
computed. Ultimately, the original images are fused together 
into one image by averaging the forward and backward 
transformations. 

III. G-MIND 
MIND was proven as a reliable registration algorithm for 

a variety of tasks (see Section 5 in [7]). However, a few 
registration tasks on real medical images, either taken from 
the Visible Human dataset [1] or provided by MIND 
establisher [18], were resulted in miss-alignments around 
edges in the image. An example is illustrated in Figure 1. 
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Fig. 1. Comparison between MIND and G- MIND registrations. The upper line displays MRI (left) and CT (right) source images of the upper abdomen. In 
the bottom line, the MIND and G-MIND registration results are shown. As can be readily seen, MIND caused a non-physiological deformation in the patient 

back (the bottom of the images), whereas G-MIND manages to perform a smooth registration preserving the contour of the original images. 



 
 

As aforementioned, edge preserving may be crucial for 
several clinical conditions. We present a new registration 
method, called G-MIND, overcoming MIND weakness in 
edge registration. G-MIND incorporates the image's gradient 
into the MIND algorithm. 

The magnitude of the gradient is determined by the 
sharpness of the intensity changes. Therefore, pixels with 
high gradient value are detected as a possible part of an edge. 
Additionally, the direction of the strongest change in the area 
surrounding the pixel is indicated by the gradient direction. 

Let us denote the two gradient images ˆ ˆ,x yI I   of an 
image I by:  
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 denotes a partial derivative.  

The G-MIND initially generates two gradient matrices 
for each of the source images I, J. Then, four MIND 
descriptors are generated for each of the gradient images 
( ˆ ˆ ˆ ˆ, , ,x y x yI I J J    ) as described in Equation 3. For each 
direction (x̂ and ŷ), a similarity metric is defined as follows: 
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Following this, Gauss-Newton optimization process is 
executed to minimize ˆ ( )xS X  and ˆ ( )yS X , resulting in the 
G-MIND displacements x̂U  and ŷU  (see Equation 5). The 
final displacement is reached by averaging the displacements 
of both directions: 

   ˆ ˆ-
1 1
2 2G MIND x y  U X U U  

The fused image is then obtained by implying the 
displacement UG-MIND on the source images. 

Figure 1 illustrates a comparison between MIND and G-
MIND for edge registration. The upper line of the figure 
shows MRI and CT scans of a patient’s upper abdomen. The 
bottom line presents the registration results of the two 
methods. Each one of the source images is fully transformed 
by the forward or backward registration transformations, as 
described in Section II. After the registration is performed, 
the MRI image should be fully spatially compatible to the 
source CT image and vice versa. As can be seen, MIND 
causes a non-physiological deformation in the back of the 
patient, while G-MIND performs an edge-preserving 
registration. 

IV. NUMERICAL EXPERIMENTS 
In this section several registration tasks, both on synthetic 

datasets and real medical images, are presented in order to 
analytically compare MIND and G-MIND. 

A. Distorting transformation and compensating registration 
on synthetic dataset 
Prior the experiment, a synthetic dataset was produced, 

including 10 images. The dataset was generated by taking a 
single underlying image assembled from various segments. 
Each of the assembled segments was deformed by several 
types of blurring filters and additive noise, applied on each 
image segment separately. 

At first, 15 pairs of images from this synthetic dataset 
were randomly selected. For each pair, one image was 
arbitrarily defined as the reference image and the other as the 
test image. Since each pair of images describes the same 
underlying object, both images are completely spatially 
compatible. 

In the second step, an affine transformation Tdistortion was 
applied on the test image, resulting in a displacement 
Udistortion. After the affine transformation was applied, the test 
image is no longer fit the reference image, as demonstrated 
in Figure 2. Every pair from the synthetic dataset was 
registered twice, by MIND and by G-MIND, each yielding 
its own registration displacement Uregistration. 

 
We define the registration error as: 

  
2

( ) ( )registration distortionerror  X U X U X  

A perfect registration should completely compensate for the 
distortion and thus the error, as defined in Equation 9, is a 
good measure for estimating the registration accuracy. 

For all the 15 synthetic pairs which were registered, G-
MIND achieved a significant lower error values on the 
edges. Figure 3 illustrates a typical result for this experiment. 
Therefore, in addition to the improvement G-MIND shows 
on real medical images (see Section III and Figure 1), it can 

Fig. 2. An example of a pair of images from the synthetic dataset 
presented in Section IV. The left image was arbitrarily chosen as a 
reference, while the right is used as a test image and was distorted 

by Tdistortion. This pair is used as the source images in the 
experiment. 
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be concluded that G-MIND outperforms MIND accuracy for 
edges.  

B. Landmark localization on inhale and exhale CT scans 
We performed a complementary experiment of regional 

landmark localization in order to examine G-MIND accuracy 
on other image textures and features. Five pairs of thorax and 
upper abdomen breathing cycle CT scans were provided by 
the DIR-Lab at the University of Texas [3]. The challenge of 
this single-modal registration tasks stems from the changes 
during breathing cycle: contrast changes due to the change of 
gas density, motion of the lung lobes and ribs and large 
deformations of small features [4]. 

For each pair of breathing cycle CT scans, 300 
corresponding anatomical landmarks were delineated by 
thoracic imaging expert with a mean selection error of           
1 mm. The corresponding landmarks are located at a variety 
of image textures, excluding edges. An example of a 
corresponding landmarks pair is showed in Figure 4. Every 
pair was registered twice, by MIND and by G-MIND. 

A common way to estimate the registration accuracy is 
by calculating the distance between corresponding 
landmarks after registrations, known as the Target 
Registration Error (TRE) [11]. Given two landmarks,  
X1=(x1, y1)T, X2=(x2, y2)T, the TRE is calculated as: 

    2 2
1 1 2 1 1 2( ) ( )x yTRE x u x x y u y y       

where U=(ux,uy)T is the registration displacement from one 
landmark to another.  

TABLE I.  LANDMARK LOCALIZATION RESULTS 

Registration 
method 

TRE [pixels] 
mean ± std 

TRE [mm] 
mean ± std 

MIND 1.01 ± 2.76 1.48 ± 4.04 

G-MIND 1.19 ± 3.36 1.98 ± 4.71 

 
Table 1 shows the results of both methods for the five 

pairs of CT scans (1500 landmarks in total). Even though 
MIND achieved a slightly lower mean TRE (1.48 mm 
comparing to 1.98mm), the difference is small compared to 
the landmarks selection mean error. Additionally, in pixel 
terms, the mean difference between the TREs is lower than a 
fifth of a pixel. That is to say, the difference is 
indistinguishable compared to the image resolution. 

This experiment confirms that along with the major 
improvement in edge preserving registration, G-MIND does 
not degrade the original MIND registration performance for 
other textures and features.  

V. DISCUSSION AND CONCLUSION 
In this work, we have presented a new multi-modal 

registration method, incorporating MIND approach and 
gradient intensity. The proposed method shows an accurate 
registration for several medical imaging challenges, 
particularly addressing edge preserving. As aforementioned, 

Fig. 4. An example of corresponding landmarks from pair number 2 of 
4DCT DIR-LAB dataset. 
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Fig.  3. This figure presents the error of the displacement field U(x,y) 
for MIND and G-MIND registrations. Each line presents a 

different synthetic pair. The two upper lines present the 
displacement’s error in x-direction, while the two bottom lines 
present the y-direction. Low values present small registration 

error. G-MIND appears to be more accurate on the object edges, 
which can be located according to Figure 2. 



 
 

reliable edge registration may be significantly meaningful for 
a variety of clinical diagnosis procedures. The G-MIND 
capabilities were demonstrated by extensive numerical 
experiments. The results plainly emphasize the advantages of 
our method in edge registration. 

While our work was focused on CT and MRI scans, we 
strongly believe that G-MIND can be applied to other 
modalities and applications. This could be a subject for a 
future research. 

Further improvement might be possible by integrating 
MIND and G-MIND into a single framework by adaptively 
combining their displacements in order to benefit from the 
strengths of both methods. 
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