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Abstract—Sensing in the Shortwave Infrared (SWIR) range has 

only recently been made practical. The SWIR band is not visible 

to the human eye but shows shadows and contrast in its imagery. 

Moreover, SWIR sensors are highly tolerant to challenging 

atmospheric conditions such as fog and smoke. However, 

fundamental differences exist in the appearance between images 

sensed in visible and SWIR bands. In particular, human faces in 

SWIR images do not match human intuition and make it difficult 

to recognize familiar faces by looking at such images. In this paper, 

we deal with a novel tone mapping application for SWIR face 

images. We propose a technique to map the tones of a human face 

acquired in the SWIR band to make it more similar to its 

appearance in the visible band. The proposed technique is easy to 

implement and produces natural looking face images. 

Index Terms—Shortwave infrared (SWIR), infrared imaging, 

tone mapping.  

I. INTRODUCTION 

Historically, the SWIR band (0.9-1.7μm) has been relatively 

inaccessible for imaging applications due to the lack of large 

format high sensitivity detectors that respond to those 

wavelengths. However, recent advances in detector technology 

have made SWIR imaging practical [1]. The interest in the 

SWIR band is driven by its advantages relative to other imaging 

bands, such as the visible band and near infrared (NIR) band. 

Due to its reflective nature, target signatures in the SWIR band 

are dominated by reflection of external sources of illumination, 

much like visible light and opposed to thermal emission of 

radiation which occurs at the longer infrared wavelengths. 

Detection of hidden targets is another benefit of SWIR since 

many man-made materials that have a very different reflectance 

in the visible/NIR bands have a nearly identical reflectance in 

the SWIR band and that reflectance is typically very different 

from the reflectance of naturally occurring background 

materials. Due to its longer wavelength, SWIR has better 

penetration through atmospheric obscurants. Therefore, SWIR 

imaging produces high SNR images in the presence of smoke, 

mist, fog, etc., as well as under low-light conditions or at night-

time. SWIR illumination is invisible to the human eye and is 

undetectable by silicon-based cameras. On the contrary, a NIR 

illumination source can be localized by detecting its purple 

glow, which is observable by a naked eye [2]. All these 

properties make the SWIR modality suitable for a wide variety 

of applications, especially when visible spectral images are not 

feasible.  

Like in the visible band, the appearance of a particular object 

in the SWIR band is determined by its reflectance and the 

ambient illumination. However, fundamental differences exist in 

appearance between images sensed in the visible and the SWIR 

band. In particular, the appearance of human faces in SWIR 

imagery differs significantly from their appearance in visible 

imagery. Due to the strong absorption by water in the SWIR 

band, the presence of moisture in the target surface has a 

significant impact on appearance in SWIR images. High 

moisture content leads to increased absorption of SWIR 

radiation, which is responsible for dark appearance of surfaces 

such as human skin that has significant water content [1]. Fig. 

1(a) and Fig. 1(b) present two subject faces acquired in the 

visible and SWIR bands respectively. In the SWIR band, 

clothing typically takes on a uniform bright appearance, skin is 

dark and hair includes bright stripes. For many applications, 

Fig. 1. A subject face acquired in (a) visible band, and (b) SWIR band. 

Note the fundamental difference in appearance between the two bands. 

A graph of visible luminance values vs. SWIR values for all face pixels 

in (a) and (b) is presented in (c). The top cluster represents skin pixels 

while the bottom cluster represents hair pixels. 
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recognition of humans is a critical requirement. The ability to do 

so, both in the visible and the SWIR band, is driven by the 

ambient illumination available for a particular application as 

well as the reflectance of face parts. Even for a human viewer, it 

is difficult to recognize a face in the SWIR band based on its 

appearance in the visible band. 

The utilization of the SWIR sub-band has yet to be studied 

in depth [3]. Only few previous works in the literature consider 

the difference in appearance between visible and SWIR images. 

Some of these works deal with multi-sensor image fusion [4, 5]. 

Other works deal with extraction of band-invariant features from 

face images for the task of face verification, detection or 

recognition across bands [2, 6, 7]. These works use gradient-

based or texture-based features and do not try to map the tones 

of a SWIR image to the tones of its counterpart visible image. 

Some techniques for mapping image tones were suggested in the 

area of image colorization. The most relevant works deal with 

infrared image colorization [8-10]. However, due to the unique 

nature of SWIR band and due to the texture-based nature of such 

methods, they cannot be applied here. 

In this paper, we show that there exists a tone mapping 

between visible and SWIR face images and propose a novel tone 

mapping technique for such images. The aim of this technique 

is to map the tones of a human face acquired in the SWIR band 

to make it more similar to its appearance in the visible band. 

II. TONE MAPPING FOR SWIR IMAGES 

Fig. 1(c) presents a graph of visible luminance values vs. 

SWIR values for the face pixels in Fig. 1(a) and Fig. 1(b). In this 

graph, pixel values are arranged in two clusters. The top cluster 

represents skin pixels, while the bottom cluster represents hair 

pixels. This arrangement hints that a tone mapping between 

visible luminance and SWIR value exists and is different for hair 

pixels and for skin pixels. In order to validate this assumption, 

we have built a dataset of a few dozen face images. Each subject 

face was acquired simultaneously by a camera in the visible 

band and by a Goodrich SWIR camera [11]. Images were 

acquired indoor with fluorescent illumination, outdoor at 

daytime, and outdoor at nighttime with street light illumination. 

Homography matrices between the visible and SWIR cameras 

were computed based on image key points. The homography 

matrices were used to compensate for the different viewpoints 

and camera parameters and in order to align spatially a visible 

image and its counterpart SWIR image. 

Fig. 2 presents three graphs of visible luminance values vs. 

SWIR values for pixels of all faces in the dataset in the three 

illumination conditions. Like in Fig. 1(c), pixel values are 

arranged in two clusters – the top cluster represents skin pixels 

and the bottom cluster represents hair pixels. Note that, 

according to the amount of illumination, outdoor at nighttime 

images contain a large amount of noise, indoor images contain 

less noise and the outdoor at daytime images are the most noise-

free. Other sources of noise are spatial misalignments in 

compensating for the different viewpoints and camera 

parameters.  

After we have shown that a mapping between visible 

luminance and SWIR values exists, we will now describe a 

technique to perform such a mapping. Since skin pixels and hair 

pixels are typically arranged in two different clusters, we handle 

them separately. First, we segment the head from its 

background. Then, we segment the head into skin and hair 

(including eyebrows) segments. This is currently done manually 

but can be easily extended to automatic segmentation using 

techniques such as those suggested in [12, 13]. 

For skin pixels, we apply a quadratic function: 

 𝑥𝑠𝑤𝑖𝑟′ = 𝑎2𝑥𝑠𝑤𝑖𝑟
2 +  𝑎1𝑥𝑠𝑤𝑖𝑟 + 𝑎0, (1)  

where 𝑎0, 𝑎1, and 𝑎2 are constants. For hair pixels, expansion of 

the dynamic range of the SWIR values is required for a natural 

look. Expansion of the dynamic range is achieved by applying a 

𝛾 correction [14]: 

 𝑥𝑠𝑤𝑖𝑟′ = 𝑏𝑥𝑠𝑤𝑖𝑟
𝛾
, (2)  

where  𝑏 and 𝛾 are constants and 𝛾 < 1. This function has 

greater sensitivity to relative differences between darker tones 

than between lighter ones, thus it compensates for properties of 

human vision.  
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Fig. 2. Visible luminance values vs. SWIR values for all face pixels in the dataset acquired (a) indoor with fluorescent illumination, (b) outdoor 

at daytime, and (c) outdoor at nighttime with street light illumination. The top cluster represents skin pixels and is modeled by a quadratic function. 

The bottom cluster represents hair pixels and is modeled by a gamma correction function. 



 

 

III. EXPERIMENTAL RESULTS 

We tested the proposed mapping technique with our face 

dataset. Optimal mapping parameter values were found by least-

squares estimation. This procedure minimizes the sum of 

squared residuals, where a residual is the difference between 

visible pixel values and their counterpart SWIR values mapped 

by the mapping function. Different parameter values were found 

for each illumination condition. The three resulting mapping 

functions are presented graphically in Fig. 2. In order to find the 

optimal parameter values, we used leave-one-out cross 

validation. For 𝑛 face images, mapping parameter values were 

found for 𝑛 − 1 images and testing was performed for the 𝑛th 

face image. This procedure was repeated 𝑛 times, each time for 

a different selection of a test image.  

Fig. 3, Fig. 4 and Fig. 5 present mapping results for indoor 

fluorescent illumination, outdoor at daytime, and outdoor at 

nighttime with street light illumination, respectively. For some 

faces, mapping results have a very natural appearance. For 

others, mapping results have a slightly unnatural tone or contain 

some minor errors due to segmentation or spatial alignment 

inaccuracies. However, for all faces in the dataset, the resulting 

image has a more natural appearance than its counterpart input 

SWIR image. The suggested mapping technique enhances facial 

features and hair tones, and produces an image that resembles an 

image in the visible band. This allows a human observer to 

recognize a familiar person by looking at such an image. 

In order to quantify our results, we have computed the 

following measure: 

 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸(𝑥

𝑠𝑤𝑖𝑟′ ,𝑥𝑣𝑖𝑠𝑖𝑏𝑙𝑒)

𝑅𝑀𝑆𝐸(𝑥𝑠𝑤𝑖𝑟,𝑥𝑣𝑖𝑠𝑖𝑏𝑙𝑒)
 , (3)  

where 𝑅𝑀𝑆𝐸(𝑎, 𝑏) is the root mean square error between 𝑎 and 

𝑏, 𝑥𝑣𝑖𝑠𝑖𝑏𝑙𝑒  is a vector of face pixels in the visible band, 𝑥𝑆𝑊𝐼𝑅 is 

a vector of face pixels in the SWIR band, and 𝑥𝑆𝑊𝐼𝑅′ is a vector 

of face pixels in the SWIR band after tone mapping using the 

proposed technique. For indoor illumination we got a mean 

𝑁𝑅𝑀𝑆𝐸 = 0.54 with variance = 0.07, for outdoor at daytime we 

got a mean 𝑁𝑅𝑀𝑆𝐸 = 0.45 with variance = 0.05, and for 

outdoor at nighttime we got a mean 𝑁𝑅𝑀𝑆𝐸 = 0.62 with 

variance = 0.10. As expected, for all three illumination 

conditions, the resulting mapped pixel values are closer to 

visible pixel values than the input SWIR values thus     

𝑁𝑅𝑀𝑆𝐸 < 1. When illumination is weak, images are noisy, 

(a) (b) (c) 

Fig. 3. Subject faces acquired indoor with fluorescent illumination in (a) visible band, (b) SWIR band, and (c) SWIR band after tone mapping 

using the proposed technique. 



 

 

thus the mean 𝑁𝑅𝑀𝑆𝐸 is small and its variance among different 

face images is large. 

IV. CONCLUSION 

SWIR cameras have many advantages and an important 

disadvantage - human faces in SWIR images do not match 

human intuition and make it difficult to recognize familiar faces 

by looking at such images. In this paper, we propose a technique 

for tone mapping SWIR face images in order to make them more 

similar to their appearance in the visible band. The proposed 

technique applies two different mapping functions – one 

mapping function is applied to skin pixels and a different 

mapping function is applied to hair pixels. The technique was 

tested with a dataset of subject faces built for this purpose. It is 

easy to implement and produces natural looking face images that 

resemble their appearance in the visible band. 
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Fig. 5. Subject faces acquired outdoor at nighttime with street light illumination in (a) visible band, (b) SWIR band, and (c) SWIR band after tone 

mapping using the proposed technique. 


