
UNDERWATER VIDEO STREAMING USING ADAPTIVE FRAME DECIMATION

Gilad Avrashi1,2, Shlomi Museri1, Yaakov Bucris2, Azriel Sinai2 and Alon Amar2

1Signal and Image Processing Lab, Technion, Haifa, Israel
2Signal Processing Department, Acoustics Research Center, Rafael, Haifa, Israel

ABSTRACT

We introduce a low data rate video compression scheme
for underwater acoustic communication. Recently, multi-carrier
based underwater acoustic modems have been proposed and
tested for data rates of up to tens of kilobits-per-second for
about 1-4 kilometers transmission range. Online transmission
of video data using these rates requires extreme compression.
Herein, we propose pre-encoder and post-decoder processing
in order to reduce the data rate. This is done by exploiting
the characteristics of underwater videos for excluding frames.
The algorithm was tested and analyzed in simulation environ-
ment with several video samples taken by divers in shallow
waters of the Mediterranean. We show that using this tech-
nique, increased performance is achieved compared to stan-
dard H.264/AVC based codecs in both objective and subjec-
tive terms.

Index Terms— Video compression, underwater acoustic
communication, orthogonal frequency division multiplexing.

1. INTRODUCTION

Underwater on-line video transmission is a growing need in
military and commercial applications, such as autonomous
underwater vehicles (AUV), oil and gas surveys, underwa-
ter pipe inspection and environmental monitoring. Current
wired on-line video transmission enables high bit rate com-
munications with the cost of range and mobility limitations.
Wireless underwater acoustic modems have been developed
in the past few years [1]. Using orthogonal frequency di-
vision multiplexing (OFDM), reliable communication with
rates of up to tens of kilobits-per-second (kbps) was reached,
enabling video transmission [4],[5]. The acoustic modem per-
formance in terms of available data rates is dictated by the
used bandwidth, which in turn affects the range of reliable
communication. Hereafter, we take the maximal data rate to
be 30 kbps, allowing us to consider reliable video stream-
ing for ranges around 2 kilometers of horizontal transmis-
sion in shallow waters. In practical underwater acoustic com-
munication (UAC), the bit error rate (BER) of the system is
about 10−3-10−2 which can not be tolerated when transmit-
ting compressed video. Hence, error correction codes such as
low density parity check and convolutional codes should be

included, reducing the effective data rate furthermore.

At the video sensor, we consider gray scale 8 bits-per-
pixel (bpp) digital data at a frame rate of 25 frames-per-second
(fps). The bit rates required for real time transmission of such
uncompressed video data is the order of tens to hundreds of
Mbps (for standard resolution videos). Considering the UAC
data rates described above, compression ratio of up to 3000 is
needed in order to enable real time UAC video streaming. The
H.264 standard [3] is an effective compression scheme even
for low data rates but provides poor results for the underwater
channel rates due to the high compression ratio.

The high level system block diagram is shown in Fig.
1. Herein, we focus on the video compression modules (en-
closed by the dashed lines). We propose an on-line video
compression codec, suited for data rates achieved with under-
water acoustic OFDM systems. By exploiting unique charac-
teristics of underwater photography, we propose pre-encoder
and post-decoder processing stages for the H.264/AVC codec
in order to reduce the data loss. Our pre-processor performs
frame decimation based on the moving edge detection con-
cept, proposed for surveillance video coding [6]. The post-
processor performs frame interpolation in order to reconstruct
the original video. The proposed algorithm [2] provides an
improved quality underwater video stream compared to the
standard H.264/AVC with the same rate. Another benefit is
the distributed complexity and power usage between the en-
coder and the decoder, which is applicable for underwater re-
source limited sensors.

Fig. 1. Underwater video streaming block diagram

2. PRE-ENCODER PROCESSING

Underwater videos have unique characteristics that can be ex-
ploited when designing a video encoder. Here, we focus our
scope on the fact that the relative speed between the video
sensor (diver or AUV) and the object is usually small and the
frames are slowly time-varying. The immediate implication is
that the standard rate of 25 fps can be reduced, which in turn
can be achieved with a frame decimation (FD) mechanism at
the decoder. A straightforward approach is to exclude frames
in pre-determined equally spaced times. This can be viewed
as resampling the video stream using a frame decimation fac-
tor denoted by D > 1. Consequently, the new frame rate will
be 25/D fps. The decimation factor can be pre-determined by
the sensor movement. However, the sensor and object veloc-
ities may not be constant during the observation time, hence
an adaptive method is expected to provide better results.

Consider L frames of a video stream (L could be the
streamer input buffer size) where the frame rate is 25 fps. Our
idea is to exclude the frames that hold negligible variations
compared with previous ones. This is done in a pre-encoding
process described in Fig. 2. The process is based on two
steps: 1) Edge detection; 2) Motion detection between con-
secutive frames. The first step uses edge detection algorithm.
In our simulations we used such as the Canny technique [7]
(see Section 3). A range of other edge detection methods can
be used in this step, such as discrete cosine transform (DCT)
coefficient thresholding [6]. By applying edge detection on
each frame, we construct a binary image. Denote by Fi the
ith frame, the respective edge map is defined by

Ei(m,n) =

{
1 Fi(m,n) is included in an edge
0 belongs to an edge (1)

where (m,n) are the pixel indices. The goal of the second
step is to determine whether significant movement exists be-
tween the ith frame (reference) and the jth frame (tested),
where j − i ≥ 1. This is done by comparing the normalized
derivative of the edge maps to a threshold µ∑

m,n |Ej(m,n)− Ei(m,n)|∑
m,nEj(m,n) + Ei(m,n)

detected
≷

not detected
µ (2)

If no significant movement was detected the tested frame
j will be skipped by the encoder. i.e, it will not be encoded by
the H.264/AVC implementation. The reference is set to the
last saved frame. This process produces a punctured video
stream, where frames in non-constant times are missing. In
order to reconstruct the video in the decoder side, the punc-
turing pattern mask is saved and sent as side information. Let
b = [b1, b2, . . . , bL]

T denote the mask vector where

bi =

{
1 ith frame is saved
0 ith frame is skipped (3)

Some video encoders support frame time stamps, which can
be used instead. Finally, the saved frames are sent to the

encoder. Given the channel capacity (allowable bit rate) R0

[kbps], the target rate of the encoder will be

R =
R0L

‖b‖0
(4)

Where ‖b‖0 denotes the 0-norm of the mask vetor, i.e, the
number of non-zero elements of b. Define the effective frame
decimation factor

Deff =
L

‖b‖0
(5)

A trade-off exists - a sparse vector b will result in higher
target rates for the encoder but will cause greater data loss
and require more frame reconstruction at the decoder. A non-
sparse b will cause the opposite results. By substituting (5)
into (4), we get

R = R0Deff (6)

We can now understand the pre-processor encoder interface,
illustrated in the right part of Fig. 2. The pre-processor pro-
duces a series of frames to be transmitted, defined as

Sk = [Fi1 , Fi2 , . . . , FiK] (7)

where the series size K is dictated either by the input or out-
put buffer and the indices i1 . . . iK correspond to the non-zero
elements of b. At the same time, using the mask vector, the
effective decimation factor Deff(Sk) is calculated. Once the
output buffer is filled, Sk is sent to the encoder as well as the
desired data rate, the buffer is cleared and the pre-processor
turns to construct Sk+1 and Deff(Sk+1).

3. POST-DECODER PROCESSING

Given the H.264/AVC decoded video and the mask vector b,
we now turn to reconstruct the original video. Unlike videos
with constant frame rate, it cannot be displayed as is, since its
frame rate varies through time. Using b, the missing frames
are located and interpolated from the previous and next de-
coded frames. Assume, for example, that bi = bi+k = 1
while bi+1, . . . , bi+k−1 = 0 in accordance to the definition in
(3). Consider the associated decoded frames Fi,Fi+k. The
goal of the post-decoder processor, described in Fig. 3, is to
reconstruct the missing frames Fi+1, . . .Fi+k−1, using one
of the methods listed below:

1. Zero order hold (ZOH): missing frames are replicated
from the previous known one. Fi+1, . . .Fi+k−1 = Fi.
Note that this method is inherent in time stamp inte-
grated decoders, in which case no post processing is
needed.

2. Linear interpolation (LI): the (m,n)th pixel of the (i+
j)th frame is given by

Fi+j(m,n) =
(k − j)Fi(m,n) + jFi+k(m,n)

k
(8)

Fig. 2. Encoder block diagram. Solid lines represent the frame and edge maps, dashed lines represent the mask vector and dotted lines
represent control operations

where 1 ≤ j ≤ k − 1 represents the index of a missing
frame relative to the last received one.

3. Motion estimation (ME) based: Fi,Fi+k are divided
into P 16× 16 blocks. A motion estimation algorithm
is then used to find (xp, yp) 1 ≤ p ≤ P , the 2D motion
vector between the pth blocks of the given frames. In
our post-decoder implementation we use the diamond
search algorithm [8] to construct the motion vectors.
Other algorithms, such as three and four step search
methods [9]-[11] can also be used in this stage. Next,
we estimate the motion vectors of the missing frames
by linear interpolation. The resulting motion vectors of
the jth frame are given by

(x(j)p , y(j)p) =

(
j

k
xp,

j

k
yp

)
, 1 ≤ p ≤ P (9)

The (m,n)th pixel of the reconstructed frame is then

Fi+j(m,n) = Fi(m− x(j)p , n− y(j)p) (10)

4. REAL DATA DEMONSTRATION

We tested our method on 10 video clips filmed by divers off
the shore of Israel. The frame resolution was 640 × 480, 8
bits-per-pixel gray scale color depth, summing up to 60 Mbps
data rate at 25 fps frame rate. Fig. 4 shows an example of
decoded and reconstructed frames using the online available
H.264/AVC implementation x264 decoder [12] and using the
proposed FD methods. The achieved data rate of the x264
was 36 kbps, while for the FD, the target rate of 30 kbps was
reached. As can be observed, the FD frames conserve more
details than the x264 frame. This is clearly noticed looking

Fig. 3. Decoder block diagram

at the bottom of the structure, enlarged in Fig. 5, where sev-
eral bolts are visible at the FD frames while indistinguishable
at the x264 frames. Looking at the pipe line running from
the top of the frame down towards the bottom right corner, a
smudging effect can be observed at the so called linear inter-
polation frame. This phenomenon is noticeable in high con-
trast regions due to the averaging of pixel values as described
in (8).

Objective results were evaluated in terms of the standard
peak signal to noise ratio (PSNR) measure. Define the mean
squared error

MSEi =

∑M,N
m=1,n=1[Fi,o(m,n)− Fi,c(m,n)]

2

MN
(11)

where Fi,o,Fi,c are the ith frames of the original and the re-
constructed videos respectively, the size of M × N pixels

Fig. 4. Example of a reconstructed frame using different methods

Fig. 5. Zoom-in on high detailed regions of Fig. 4

each. The PSNR of a video is given by

PSNR = 10log10

(
A2

1
L

∑L
i=1 MSEi

)
(12)

where A is the maximum possible pixel value (255 when us-
ing 8 bpp). It should be noted that while PSNR enables objec-
tive measurement of video quality, it suffers from distinct in-
compatibilities with human impression measurements. PSNR
is calculated by pixel-wise comparison, making it highly sen-
sitive to displacements while fairly optimistic for low contrast
images. PSNR results are shown in Fig. 6. A set of 1000
frames was tested for a range of data rates using each one of
the frame recovery methods and the x264 codec solely. For
rates below 50 kbps, which are relevant for UAC in ranges of

few kilometers, the FD method achieves better performance.
The x264 codec in its standard configuration could not achieve
rates below 36 kbps for the tested files. Comparing the frame
recovery methods, it can be deduced, in contrast to the im-
pression given by Fig. 4, that the linear interpolation method
achieves better results than the other two. The reason is that
the errors of the ME and ZOH methods are typically block
and frame shifting respectively, while for the LI method the
misplacements are smudged within the already small pixel
value range.

Fig. 6. PSNR vs data rate.

Finally, we explored the frame rate trade-off, explained
in section 2. The proposed adaptive frame decimation algo-
rithm was tested for a range of motion estimation and Canny
method thresholds. Fig. 7 illustrates the PSNR performance
for a range of frame rates achieved by altering these thresh-
olds for a single test video with 30 kbps target data rate. Clearly,
a trade-off behavior is visible with an optimum at around 10
fps (or an effective decimation factor of 2.5). As a reference,
the estimated PSNR for the x264 codec at 30 kbps is plotted
(rightmost square).

5. CONCLUSION

We have presented a novel underwater video compression
technique, which exploits the unique features of underwater
videos to achieve the UAC data bit rates. Improved PSNR val-
ues as well as good human impression results were achieved
compared to a H.264/AVC standard codec. These results open
a gate to online UW video streaming using acoustic commu-
nications, for ranges of several kilometers.

Fig. 7. PSNR vs frame rate.

6. ACKNOWLEDGMENTS

The authors would like to thank the Signal and Image Pro-
cessing Lab (SIPL) at the department of Electrical Engineer-
ing at the Technion for providing the necessary facilities that
helped to complete this work. Special thanks to Mr. Rami
Cohen, member of the SIPL staff, for his thorough guidance
and help during the work on this project.

7. REFERENCES

[1] B. Lee, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett
“Multicarrier Communication Over Underwater Acous-
tic Channels With Nonuniform Doppler Shifts”, IEEE
Oceanic Engineering, vol. 33, no. 2, Apr. 2008, pp. 198-
209.

[2] G. Avrashi and S. Museri “Video Compression for Un-
derwater Acoustic Communication”, Technical Report
P 9-1-12, Signal and Image Processing Lab, Electrical
Engineering department, Technion, Israel, Dec. 2013.

[3] J. Osterman et. al. “Video Coding with H.264/AVC:
Tools, Performance, and Complexity”, IEEE Circuits
and Systems Magazine, vol. 4, Apr. 2004, pp. 7-28.

[4] L.D. Vall, D. Sura and M. Stojanovic “Towards Under-
water Video Transmission”, Wireless Underwater Net-
works (WUWNet) ’11, Dec. 2011.

[5] J. Ribas, D. Sura and M. Stojanovic, “Underwater Wire-
less Video Transmission for Supervisory Control and
Inspection Using Acoustic OFDM”, IEEE Oceans ’10,
Sep. 2010, pp. 1-9.

[6] C. Kim and N.E. O’Connor, “Low Complexity Video
Compression Using Moving Edge Detection Based on
DCT Coefficients”, MMM 2009, vol. 5371, Apr. 2010,
pp. 96-107.

[7] J. Canny, “Computational Approach to Edge Detec-
tion”, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 8, Nov. 1986, pp. 679-698.

[8] S. Zhu and K. Ma, “A New Diamond Search Algorithm
for Fast Block-Matching Motion Estimation”, IEEE
Transactions on Image Processing, vol. 9, no. 2, Feb.
2000, pp. 287-290.

[9] R. Li, B. Zeng and M. Liou, “A New Three-Step Search
Algorithm for Block Motion Estimation”, IEEE Trans-
actions on Circuits and Systems for Video Technology,
vol. 4, no. 4, Aug. 1994, pp. 438-442.

[10] J. Lu and M. Liou, “A Simple and Efficient Search Al-
gorithm for Block-Matching Motion Estimation”, IEEE
Transactions on Circuits and Systems for Video Technol-
ogy, vol. 7, no. 2, Apr. 1997, pp. 429-433.

[11] L.M. Po and W.C. Ma, “A Novel Four-Step Search
Algorithm for Fast Block Motion Estimation”, IEEE
Transactions on Circuits and Systems for Video Tech-
nology, vol. 6, no. 3, Jun. 1996, pp. 313-317.

[12] VideoLan Organization, “x264 home page”, (Link:
www.videolan.org/developers/x264.html).

