
A HIGHLY PARALLEL CODING UNIT SIZE SELECTION FOR HEVC

Liron Anavi, Avi Giterman, Maya Fainshtein, Vladi Solomon, and Yair Moshe

Signal and Image Processing Laboratory (SIPL)

 Department of Electrical Engineering, Technion – Israel Institute of Technology

yair@ee.technion.ac.il, http://sipl.technion.ac.il/

ABSTRACT

The High Efficiency Video Coding (HEVC) standard

provides a substantial improvement in coding efficiency over

previous video coding standards at the cost of a higher

computational complexity. HEVC employs a quadtree based

image structure by partitioning the image into coding units

(CUs). Finding the optimal CU size in terms of rate-distortion

is one of the most computationally challenging parts of any

HEVC encoder. Previous works for fast CU size selection are

usually based on data dependency between neighboring CUs

and therefore limit the degree of possible parallelism. In this

paper, we present a fast CU size selection method that does

not depend on any data from other CUs in the same frame,

thus allowing utilization of the high parallel processing

capability of many-core processors, such as a GPU.

Experimental results show that the proposed method incurs

only a negligible loss in rate-distortion performance

compared with counterpart methods that limit parallelism.

Index Terms— HEVC, coding unit (CU), fast video

coding, parallelization, GPU

1. INTRODUCTION

High Efficiency Video Coding (HEVC) is the newest video

coding standard of the ITU-T Video Coding Experts Group

(VCEG) and the ISO/IEC Moving Picture Experts Group

(MPEG). It enables substantially increased compression

performance, compared with previous standards, at the

expense of increased computational complexity [1]. To

achieve high compression performance, HEVC replaces

macroblocks, which were used in previous video coding

standards, with a quadtree structure, enabling a high level of

flexibility in the encoding process. HEVC initially divides

each frame into non-overlapping coding tree units (CTUs)

that can be of size 16x16, 32x32 or 64x64 pixels. Each CTU

can be recursively further divided into four smaller quadratic

blocks called coding units (CUs), down to blocks of size 8x8.

This recursive subdivision composes a quadtree structure and

its levels are usually called depths. The quadtree structure

allows high compression efficiency as smooth stationary

areas are encoded with large blocks and detailed areas with

complex motion are encoded with small blocks, resulting in

a small side-information overhead. Selecting a good quadtree

partitioning, in terms of rate-distortion, is extremely

important for achieving high compression efficiency.

However, since there are many possibilities for partitioning a

CTU, and since each partitioning under consideration

requires a rate-distortion optimization of different motion

estimation and intra prediction modes, this procedure incurs

a high computational complexity. Therefore, it is required to

design a clever fast method for CU size selection.

Several methods for CU size selection have been

proposed in the literature. Some proposals to speed up CU

decision are based only on information from the current CU.

For example, a mathematical model for reducing the number

of depth checks, based on Bayesian decision rule and

estimation methods, is introduced in [2]. This algorithm has

an offline stage applied to a training set of videos. The results

depend on the provided training set, which may not qualify

for certain types of videos. Early termination is considered to

be a simple and efficient technique to reduce encoding time.

A top-down partitioning of the HEVC quadtree is usually

performed, pruning the quadtree once a threshold of rate-

distortion cost is reached. An early termination method based

on analysis of previous SKIP mode CUs is proposed in [3]

and implemented in the HM4.0 reference software. It is based

on the observation that if the SKIP mode is chosen as the best

mode for the current CU, then no further splitting is required.

This method can only be applied to inter prediction and is

elaborated for non-SKIP CU modes in [4].

Other proposals to speed up CU decision use information

from the neighboring CUs to select candidate CU sizes. A

content-based fast CU decision algorithm was developed in

[5]. The ratio of utilized CUs to total number of CUs in

different depths at frame level is analyzed and rarely used

CUs with specified depths are skipped. The analysis used in

this method is data dependent and is affected by encoding

configurations. A method that uses an early termination

approach has been proposed in [6] based on the adaptive

weighted average rate-distortion cost of adjacent SKIP mode

CUs. Methods based on depth information correlation

between spatial and temporal adjacent CUs and the current

CU are proposed in [7-10]. They speed up calculation by

reducing the depth search range. [10] is a revision of the

method [9] with favorable results compared with counterpart

algorithms.

Since the aforementioned fast CU size selection methods

assume serial computation, the acceleration they can achieve

is limited. With the recent development of many multicore

parallel computing platforms, it is possible to further

accelerate video encoding through parallelization.

Nowadays, personal computers are typically equipped with a

highly parallel, powerful, and cost-effective Graphics

Processing Unit (GPU). Hence, some previous works in the

literature have proposed to accelerate HEVC encoding using

a GPU [11-15]. The most computationally demanding part of

a video encoder is motion estimation. Therefore, most works

implement this feature on the GPU, while leaving the rest of

the encoding process for the CPU. Although high speedups

are achieved by GPU-based motion estimation algorithms,

further acceleration is still required for practical video

services. In particular, after accelerating motion estimation,

CU size selection becomes a major bottleneck. In addition,

reducing the depth search range of CU sizes may prevent

unnecessary computations and reduce the computational load

on both the CPU and the GPU. Parallelizing an HEVC

encoder CU size selection is difficult due to many

dependencies at CTU-level within the same frame. One

approach for CU size selection on many-core processors,

such as a GPU, is to schedule computations by building a

directed acyclic graph of dependencies among neighboring

CTUs [16].

In this paper, we propose a highly parallel method for CU

size selection. In contrast to [16], we do not map

dependencies but remove some of them. The method does not

depend on any data from other CTUs in the same frame, thus

allowing easy parallelization for a GPU.

2. FAST SERIAL CU SIZE SELECTION

The CU size selection method proposed in [10] is designed

for serial computation and gives superior results compared

with counterpart serial methods. In this section, we describe

this method in brief as it is a basis for the parallel method we

propose later in this paper.

The method described in [10] exploits spatial and

temporal correlations of a video. CU size selection relies on

nine previously coded CTUs, divided into two groups: 𝛼 and

𝛽, as shown in Fig. 1. Out of the CTUs that have already been

coded in a serial order, these CTUs are the best candidates to

predict which depths are more probable than the others for

the current CTU quadtree partitioning [9]. All the CTUs in

group 𝛼 have higher correlation to the CTU being evaluated

than those in group 𝛽 [9]. The four CTUs in group 𝛼 are first

checked for the depths they adopted. Then, if needed, the five

CTUs in group 𝛽 are also checked for the depths they

adopted. One of the major contributions of this method

compared with counterpart methods is that depths are

checked in neighboring CTUs only in CUs that are in a small

strip of size 𝑅 = 8 around the CTU being evaluated. This

strip is depicted in Fig. 2. Using depth information only from

CUs that are in a small strip around the CTU being evaluated,

raises spatial correlation, leading to more accurate depth

information.

According to the quadtree depths adopted by neighboring

CUs in a strip of size 𝑅, four similarity degree classes are

defined - high similarity, medium-high similarity, medium-

low similarity and low similarity. Low similarity indicates

that all depths are adopted in group 𝛼, hence no conclusive

decision can be made on possible depths of the evaluated

CTU. In this case, 3 out of the 4 possible depths are checked,

discarding depth 0 (no partitioning of the CTU) or depth 3

(smallest possible CUs). The depth to discard is selected

based on the depths of 𝐼, the collocated CTU in the reference

frame. High similarity indicates that all the CTUs in group 𝛼

adopted a single depth. If all the CTUs in group 𝛽 also

adopted the same depth, this depth is selected for the

evaluated CTU. Otherwise, an additional neighbor depth is

checked. In many cases, low or high similarity conditions are

not met since two or three depths are adopted by the CTUs in

group 𝛼. Such medium-similarity CTUs have a tendency to

be either more neighbor-dependent, or not. Those more

correlated to neighboring CTUs, i.e., the CTUs in their

group 𝛼 adopted two depth levels, are classified as medium-

high similarity. Medium-low similarity is used to handle

cases where group 𝛼 adopted three depth levels. For medium-

low similarity CTUs, since a single depth is not adopted by

any of the CTUs in group 𝛼, this depth is discarded. A second

depth can be further discarded if one depth is adopted by all

the CTUs in group 𝛼, and another depth is adopted only by a

single CTU in group 𝛼. If two depths are adopted each by one

CTU in group 𝛼, the depth discarded is the one with the

greater distance to the CTU adopted by all the neighboring

CTUs. For medium-high similarity, although two depths are

not adopted by group 𝛼, one, two or three depths may be

checked. Three depths are checked if group 𝛽 adopted a depth

Fig. 2. The depth information extracting region decided by

𝑹 in the current frame according to [10].

Frame N-1 Current frame N

C B D

A Curr.F

E

G

HI

Fig. 1. Neighboring CTUs of the current CTU used in [10]

for CU size selection. 𝜶 = {𝑨, 𝑩, 𝑪, 𝑰}, 𝜷 = {𝑫, 𝑬, 𝑭, 𝑮,𝑯}

C B D

A Curr.R

R

not adopted by group 𝛼. If group 𝛽 adopted two such depths,

only the depth with a greater number of occurrences is

additionally checked. One depth is checked if group 𝛽

adopted no new depths and CTU 𝐶 is the only CTU to adopt

one of the two depths. This is done due to the relatively low

correlation in group 𝛼 of CTU 𝐶 to the evaluated CTU.

Otherwise, two depths are checked. The aforementioned

procedure for fast CU selection is summarized in Table 1.

3. FAST PARALLEL CU SIZE SELECTION

A GPU is a parallel many-core programmable processor able

to provide high computational performance in comparison

with a CPU. Its tremendous computational capability can be

used not only for accelerating computer graphics algorithms,

but also for general purpose computing (GPGPU). Therefore,

there has been a strong demand for using a GPU as a

coprocessor to assist the CPU with data-intensive

applications. A GPU is designed for problems that can be

expressed as a parallel computation. Its programming is

based on running short code sections, called kernels. Each of

these kernels defines a task that can be executed multiple

times and independently from other kernel calls. The

overhead of initiating and loading a kernel onto the GPU is

high. Therefore, using a GPU for executing high complexity

calculations becomes efficient only when running an initiated

kernel many times. A natural implementation of an HEVC

encoder on a GPU or any other many-core processor, may

create many kernel calls by allocating computational tasks for

each CTU to a different kernel call. In order to be efficient,

the GPU must run the kernel calls independently. As a result,

this architecture makes it impossible to rely on information

from other CTUs in the same frame, since computational

tasks for all kernel calls should execute in parallel. However,

as most fast CU size selection methods proposed in the

literature assume serial computation, and therefore use

information from spatial adjacent CTUs, they are not suitable

for execution on a GPU. In this section, we propose a method

for fast CU size selection that does not use information from

other CUs in the same frame. This method has no spatial

dependencies in the same frame thus suitable for highly

parallel implementation on a many-core processor.

Depth correlations between the current CTU and

neighboring CTUs were collected in [10] and are summarized

in Table 2. From this table we can see that, as we take

information about quadtree depths from previously coded

frames, the correlation between the evaluated CTU and

neighboring CTUs decreases. This brings us to the

assumption that predicting the optimal quadtree partitioning

of a CTU based on the depths of neighboring CTUs from

previous frames only is expected to hurt coding efficiency. In

order to verify this assumption and to quantify the loss of

coding efficiency, we have created a “temporally shifted”

version of the method proposed in [10]. Namely, we use the

method as in [10] with 𝑅 = 8. However, instead of using

group 𝛼 and group 𝛽 with CTUs of the current frame 𝑁 and

of the reference 𝑁 − 1 frame, we use CTUs of the reference

𝑁 − 1 frame and of the 𝑁 − 2 frame respectively, at the same

locations. Results of this naive “temporal shift” on the

sequences given in Table 3, show on average an increase of

about 2% in bit-rate with a negligible degradation in PSNR,

compared with [10]. These results show that, even with a

simple change from serial methods, it is possible to gain

significant acceleration of CU size selection for HEVC

encoding by high parallelization with only a small penalty in

coding efficiency.

With these encouraging results in mind, we will now

describe a fast CU size selection method that exploits better

the correlations with CTUs in previous frames. The CTUs

used by this method are depicted in Fig. 3. For designing the

method, we use two observations. First, as seen in Table 2,

Similarity Depths checked Group 𝛽 used?

low 3 no

medium-low 2 or 3 no

medium-high 1 or 2 or 3 yes

high 1 or 2 yes

Group CTU
Corr. for

𝑅 = 8

𝛼

A 0.767

B 0.772

C 0.759

I 0.789

𝛽

D 0.735

E 0.725

F 0.729

G 0.725

H 0.722

 Frame N-1 Current frame N

Curr.

Frame N-2

M

J

F

G

E

I H

K

L

N

Fig. 3. Neighboring CTUs of the current CTU used in this

paper for CU size selection.

 𝜶 = {𝑬, 𝑭, 𝑰, 𝑰}, 𝜷 = {𝑮,𝑯, 𝑱, 𝑲, 𝑳,𝑴,𝑵}

Table 1. Summary of the methods for fast CU size selection

used in [10] and in this paper. The degree of similarity

between the CTU under evaluation and neighboring CTUs in

group 𝛼 determine the number of depths to be checked and

whether to also use information from neighboring CTUs in

group 𝛽.

Table 2. Depth correlations between the current CTU and

neighboring CTUs, taken from [10].

out of the neighboring CTUs in frame 𝑁 − 1, the

collocated CTU 𝐼 has substantially higher correlation with the

evaluated CTU. In order to exploit this higher correlation, we

introduce a weighted version of group 𝛼. This group contains

now three instead of four CTUs but CTU 𝐼 is included twice

to give it a double weight in the similarity degree class

decision. CTUs 𝐸 and 𝐹 are also included in this group due

to their high correlation with the evaluated CTU. A second

observation is that, as we use CTUs from a frame that has

already been coded, we can use neighboring CTUs not only

to the left and to the top of the evaluated CTU but also to its

right and to its bottom (CTUs 𝐺,𝐻, 𝐿,𝑀). This allows us to

compensate for the decrease in CTU correlation by adding

more CTUs that were not available in the serial algorithm and

introduce a larger group 𝛽. The new group 𝛽 includes seven

CTUs instead of five - the six neighboring CTUs in the 𝑁 −
1 frame not included in group 𝛼 (CTUs 𝐺,𝐻, 𝐽, 𝐾, 𝐿,𝑀), and

the collocated CTU from the 𝑁 − 2 frame – CTU 𝑁. This

CTU has a high correlation with the evaluated CTU,

estimating according to Table 2 a loss of 0.038 in correlation

with CTU 𝐼. The method we propose for parallel CU size

selection is similar to the one proposed in [10] with different

CTUs in group 𝛼 and in group 𝛽. It is important to note that,

although the description of the method we propose is similar

to the description of [10] in Section 2 and in Table 1, due to

the change in the group 𝛼 and in group 𝛽, the decisions of the

new method may be different. In particular, since group 𝛼 in

the proposed method includes CTU 𝐼 twice, more CTUs on

average may be assigned with a high similarity compared

with [10], thus fewer depths are checked. This leads to a faster

running time.

4. RESULTS

In order to evaluate the performance of the proposed method,

we implemented it in the HM16.2 reference software and we

also implemented the method proposed in [10]. We tested

with video sequences in class B (1920x1080), class C

(832×480) and class D (416×240). We used "low delay P,

main" encoding configuration with 𝑄𝑃 = 22, 27, 32, 37. The

experimental results are given in Table 3, in which the change

in coding performance, measured by BD-rate [17], and

change in (serial) coding time are given. Table 3 compares

[10] and the proposed method to the reference software

(implementing [3]). The proposed method outperforms the

state-of-the-art method proposed in [10] and achieves on

average 1.65% bitrate increase compared with the reference

software. Even for a serial implementation, running time is

reduced by 56.99% on average compared with the reference

software and is lower than the running time of [10]. A much

larger reduction in running time can be achieved by a highly

parallel implementation on a many-core processor, such as a

GPU. Notice that more time savings are achieved for video

sequences of higher resolutions. The reason is that there is a

stronger spatial correlation between neighboring CUs in

images of high resolution. Fig. 4 shows a comparison of rate-

distortion curves for the sequence BQTerrace (1920x1080)

between the reference software and the proposed method. It

can be seen that the rate-distortion difference is very small.

5. CONCLUSION

In this paper, we proposed a fast, highly parallel CU size

selection method for HEVC that is suitable for

implementation on a many-core processor, such as a GPU.

Parallelism is achieved by removing dependencies and not

using information from other CUs in the same frame.

Nevertheless, the proposed method achieves only a negligible

loss in rate-distortion performance and faster running times

compared with counterpart serial methods that limit

parallelism even when executed in a serial manner.

ACKNOWLEDGMENT

The authors would like to thank Prof. David Malah, head of

SIPL, and Nimrod Peleg, chief engineer of SIPL, for their

support, advice, and helpful comments. The work was

supported in part by Harmonic. Special thanks are given to

Raz Nitzan from Harmonic for encouraging this activity.

Class Sequence

[10] proposed

BDrate

[%]

ΔT

[%]

BDrate

[%]

ΔT

[%]

B BQTerrace 0.63 -41.70 3.31 -66.14

C

BasketballDrill 1.37 -38.19 0.80 -61.30

BQMall 1.00 -38.31 1.95 -59.08

PartyScene 0.16 -32.27 1.18 -56.41

RaceHorses 0.50 -30.88 0.59 -55.36

D

BasketballPass 0.52 -34.74 2.45 -52.83

BQSquare -0.10 -27.63 2.03 -54.30

BlowingBubbles 0.36 -25.29 1.59 -54.54

RaceHorses 0.41 -24.26 0.98 -52.76

Average 0.54 -32.58 1.65 -56.99

Table 3. Results of the proposed CU size selection method

compared with [10]. For each method, change in coding

performance in BD-rate, and change in (serial) coding time,

are given compared to the HM16.2 reference software.

0 1 2 3 4 5 6 7

x 10
4

32

34

36

38

40

Bitrate(kbps)

P
S

N
R

(d
B

)

HM16.2

proposed

Fig. 4. Rate-distortion curves of the sequence BQTerrace.

6. REFERENCES

[1] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,

"Overview of the high efficiency video coding (HEVC)

standard," Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 22, pp. 1649-1668, 2012.

[2] X. Shen, L. Yu, and J. Chen, "Fast coding unit size selection

for HEVC based on Bayesian decision rule," in Picture Coding

Symposium (PCS), 2012, 2012, pp. 453-456.

[3] K. Choi and E. S. Jang, "Fast coding unit decision method

based on coding tree pruning for high efficiency video coding,"

Optical Engineering, vol. 51, p. 030502, 2012.

[4] R.-h. Gweon and L. Yung-Lyul, "Early termination of CU

encoding to reduce HEVC complexity," IEICE Transactions

on Fundamentals of Electronics, Communications and

Computer Sciences, vol. 95, pp. 1215-1218, 2012.

[5] J. Leng, L. Sun, T. Ikenaga, and S. Sakaida, "Content based

hierarchical fast coding unit decision algorithm for HEVC," in

Multimedia and Signal Processing (CMSP), 2011

International Conference on, 2011, pp. 56-59.

[6] J. Kim, S. Jeong, S. Cho, and J. S. Choi, "Adaptive coding unit

early termination algorithm for HEVC," in Consumer

Electronics (ICCE), 2012 IEEE International Conference on,

2012, pp. 261-262.

[7] H. S. Lee, K. Y. Kim, T. R. Kim, and G. H. Park, "Fast

encoding algorithm based on depth of coding-unit for high

efficiency video coding," Optical Engineering, vol. 51, p.

067402, 2012.

[8] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, "An

effective CU size decision method for HEVC encoders,"

Multimedia, IEEE Transactions on, vol. 15, pp. 465-470, 2013.

[9] Y. Zhang, H. Wang, and Z. Li, "Fast coding unit depth decision

algorithm for interframe coding in HEVC," in Data

Compression Conference (DCC), 2013, 2013, pp. 53-62.

[10] R. Fan, Y. Zhang, Z. Li, and N. Wang, "An improved

similarity-based fast coding unit depth decision algorithm for

inter-frame coding in HEVC," in MultiMedia Modeling, 2014,

pp. 529-540.

[11] X. Wang, L. Song, M. Chen, and J. Yang, "Paralleling variable

block size motion estimation of HEVC on CPU plus GPU

platform," in Multimedia and Expo Workshops (ICMEW), 2013

IEEE International Conference on, 2013, pp. 1-5.

[12] S. Radicke, J. Hahn, C. Grecos, and Q. Wang, "A highly-

parallel approach on motion estimation for high efficiency

video coding (HEVC)," in Consumer Electronics (ICCE), 2014

IEEE International Conference on, 2014, pp. 187-188.

[13] X. Jiang, T. Song, T. Shimamoto, and L. Wang, "High

efficiency video coding (HEVC) motion estimation parallel

algorithms on GPU," in Consumer Electronics-Taiwan (ICCE-

TW), 2014 IEEE International Conference on, 2014, pp. 115-

116.

[14] S. Kim, D.-K. Lee, C.-B. Sohn, and S.-J. Oh, "Fast motion

estimation for HEVC with adaptive search range decision on

CPU and GPU," in Signal and Information Processing

(ChinaSIP), 2014 IEEE China Summit & International

Conference on, 2014, pp. 349-353.

[15] F. Wang, D. Zhou, and S. Goto, "OpenCL based high-quality

HEVC motion estimation on GPU," in Image Processing

(ICIP), 2014 IEEE International Conference on, 2014, pp.

1263-1267.

[16] C. Yan, Y. Zhang, J. Xu, F. Dai, L. Li, Q. Dai, et al., "A highly

parallel framework for HEVC coding unit partitioning tree

decision on many-core processors," Signal Processing Letters,

IEEE, vol. 21, pp. 573-576, 2014.

[17] G. Bjontegaard, "Calcuation of average PSNR differences

between RD-curves," Doc. VCEG-M33 ITU-T Q6/16, Austin,

TX, USA, 2-4 April 2001, 2001.

