r i i
a_Motorola DSP96002

R.Bareket, Y.Or-Chen, N.Peleg,
G.Spiro, O.Tzifronin

Signal & Image Proc. Lab., EE Dept., Technion IIT,
Haifa, Israel

Abstract
This Paper Describes an image compression
application based on approximating an original
image by a fractal one. It is running on a DSP
board, utilizing the Motorola DSP96002.

According to the algorithm we shall descibe,
the original image is divided into non-overlapping
blocks, and the approximation is done blockwise.
For each block we examine blocks in its vicinity,
and find a larger block and a transformation that
shrinks the large block and maps it onto the original
block. The process is speed up by classifying the
blocks into one of 3 categories: shade, midrange
and edge. Finally, we store the position of the
large block and the transformation, thus storing
the fractal qualities of the image. For every block
a fractal transformation is found. When this
transformation is performed iteratively on any
initial image, the result converges to the fractal
approximation of the image.

The system includes a PC-386 host (running
DOS) and a PC-Board, based on the Motorola
DSP96002 with 128KB RAM, running at 12MHz.
The DSP's major features are its highly parallel
assembly language and multiple bus structure. We
also use the fact that the DSP is a dual port processor,
so it can execute codes using an external memory
bank, connected only to it, while communicating
with its host computer through another external
memory bank (Connected to both).
The DSP does all the calculations, while the host
does the control and displays output (e.g. elapsed
time, iteration no., decoded images etc.)

Introduction to Fractal Image Compression
A theoretical background for this work can

be found in [1] and [2]. According to [2], one can
describe a curve characterized by a set of points
(nodes), by a set of iterative functions which act
upon the nodes.

For every two following nodes (range) one finds 2
other nodes (domain) and a transformation that
maps the domain nodes onto the range nodes.

The transformation should be contractive, so that
the domain nodes can not be the range nodes
themselves, because this results in an identity
transformation which is not contractive.

In this way, one finds relations between
parts of the curve, so by forcing a set of nodes to
obey this relations, one recreates an approximation
of the original curve. Only the transformation

parameters are saved, and this is obviously less -

658

memory consuming. To reconstruct the curve one
lets the transformations to act iteratively on any
set of initial nodes.

In order to implement this idea when
compressing an image, it must be generalized. An
image, instead of a curve, will be divided into
sub-blocks, instead of nodes. For each range block
a domain block and a transformation are found.
The compressed image will in fact be represented
by the set of parameters characterizing the
transformation necessary to create the range blocks
out of the domain blocks. Reconstructing the image
is very similar to reconstructing the curve: we let
the transformation act on any initial image, to create
a new imagewhich is closer to the original image
(the encoded image). Applying this procedure
iteratively, where the recent image serves as the
domain for creating a new one, yields a series of
images which converge to the fractal approximation
of the original one.

Formally, we consider the digital images
space (#0,d), where d is a distortion measure.
We refer to the original images as Loz and search
for a contractive transformation 7, which is defined
from the digital images space to itself, and that
Loriy is approximately a fixed point (in this space)
under it. We say that frg is self-transformable
(invariant) under 7.

The requirements on 7 are:

1. There exists some 0<s</ , such that for every
4 and T , the contraction condition holds:

dir(uw), 7)< s-d(u.v]

2. The distortion d[V(lorig), toris] is very small (the
invariance condition).

3. 7 is less complex than the original image (can
be described by less information)

The number s is said to be the contractivity of 7.

When 7 acts n times iteratively, on any
initial image po , we have:

n 1 n
d[plorig, T" (po)) < e d(pori, T(or)) + 5" - d(porig, o) The

-3

contractivity number s should be smaller then one,
so that when n grows higher the second term
vanishes, and the upper limit for the distortion
between the reconstructed image and-the original
one is of the size of the distortion between pori
and T(Men, which is very small. We see then that
the initial image is not important, as the second
term, which involves it , vanishes. After a sufficient
number of iterations, the fractal approximation of
the image will evolve out of any initial image.
The transformation 7 is called the "fractal code”
of Horig .

"~ Inorderto find 7, we rely on the invariance
of the original image under it. If we find a
transformation that maps the original image
approximately onto itself, then that transformation
is the desired one. Since it is very difficult to find
a transformation that acts on the whole image, we



divide the image into many sub-blocks and split 7
into many block-transformations. This allows us
to use a small set of relatively simple
transformations. The image is divided into square
non-overlapping blocks. For each block in the

image (range) we find a block from a domain pool-

and a transformation from a transformations set.
This transformation should, when acting on the
domain block, result in a block which is similar to
the original block.

The transformation consists of two parts: a
geometric transformation and a massic
transformation. The geometric transformation g
shrinks a domain block whose size is four times
the size of the range block. The massic
transformation changes the gray levels of the pixels
in the block and arranges them, i.e. rotating the
block, inverting the block with reference to some
axis, and so on. For every range block we find a
domain block Di and a transformation % (Figure
1), such that z{g(D:)] is the best approximation
of the original range block.

The domain pool is created from the original image
dividing it into large partially overlapping square
blocks (the size of 4 range blocks).

The domain pool is related to the image,
and this will lead to "fractal linkage" between
different parts of the image. We point out that this
particular domain pool is not necessary when
decoding the image and is therefore not saved,
yielding a very short code.

The transformation 7 is the union of all
the block transformations, noting the domain and
range blocks position in the image and the
parameters of the massic transformation. The

decoding is done block by block, just like the

encoding.

The Algorithm

The original image is divided into square
non-overlapping 8x8 blocks, Creating a 2-
dimensional array of blocks. A finer division or a
two-level division can also be implemented [1]
(and was performed in simulation [6]). This array
of blocks will be referred to as R-space. smaller
blocks allow finer "results but demand
moreprocessing time and result in less compression,
whereas larger blocks allow faster encoding and
more compression, but yield poor results [6].

The domain pool is generated by dividing
the image into square partially overlapping 16x16
blocks, creating another 2-dimensional array of
blocks. The blocks are created by sliding a window
of 16x16 pixels over the original image with &h
and Jv as horizontal and vertical shifts,
respectively. The smaller & and v are, the bigger
the domain pool is and the longer the encoding
process is. If 6h and &v are big, there are less
domain blocks which are close to the ran ge block,

659

and this proves to result in a bad reconstruction
[6]. Accordingly, we used 8k =2 and v =2, This
array of blocks will be referred to as D-space.

As mentioned before, we let geometric
transformation and a massic transformation act on
the domain block, and compare the resulting block
with the range block. To speed up this process, the
blocks are classified, both in the range and the
domain. The classification, based on [3], is to one
of three categories: 'shade’, 'midrange’ and 'edge’.
A 'shade’ block is a smooth block with no significant
gradient (in the sense of gray levels), an 'edge’
block is a block in which there is a significant
change in gray levels along a curve, usually at the
margins of an object in the image, and a 'midrange’
block is a block in which there is a slight gradient
of the gray levels, but not a definite edge (Fig. 1).
The classification takes place during the pre-
processing of the image, in which every range block
and every domain block is analyzed. This
classification enables us to compare blocks of the
same category only, and this is all the comparisons
we need, since the set of transformations that we
use does not change the classification of the blocks.
This means that we check only relevant blocks,
and save time.

As mentioned before, the transformations
consists of a geometric part and a massic part. The
geometric transformation,d, shrinks a 16x16
(domain) block into an 8x8 (range) block, by
averaging four pixels into one. The massic
transformation, ¢, belongs to a set of
transformations which perform global changes on
a block. These transformations can be split up into
two groups: transformations that change the gray
level of the pixels and transformations that change
the position of the pixels in the block. The first
group consists of three transformations: creating a
block with a given gray level (g- absorption),
changing the current gray level by a given value
(6 g-translation) and changing the current gray level
by multiplying it with a given number (a-scaling).
These transformations act on all the pixels in the
block, and make sure the gray level of every pixel
1s within the range of 0-255.

The second group consists of eight isometric
transformations. They perform inversions, with
respect to the X axis, the Y axis or the diagonals,

and rotations of 90°, 180° and 270°. All the
transformations, from both groups, have
contractivity one, except the scaling transformation,

which has contractivity o, These transformations
enable us to derive a set of blocks out of one
block, thus enriching the domain pool.

The geometric transformation is not
adaptable. It has no parameters and simply shrinks
a 16x16 block to a 8x8 block. The massic
transformations are adaptable and all three has one
parameter each. The isomtries have no parameters,
but since the final massic transformation uses only



one (if any) isometry, one can consider the
isometries as a transformation with one parameter,
determining the isometry type used. The massic
transformations, therefore, may vary with
parameters. Finding the correct parameters is the
major part of the encoding process.

Encoding a range block involves finding
the best (Di, ¢) pair, so that the distortion between
the reconstructed block (after letting® and ¢« act
on a domain block D:) and the original range block
is minimal. The product space D¢ is called a global
pool, or a virtual codebook. The product space is
vast. For a 256x256 image, with 8x8 range blocks
and 16x16 domain blocks, and &h = v =2, the
size of D-space is 14641 elements. If we consider
the massic transformation too, we arrive to a
conclusion that D¢ is several times bigger than D.
This gives us an enormous codebook, and this is
why the encoding process is time consuming.

The size of the D-space is the bottleneck
of the encoding process. In order to make the
encoding faster, one should use a smaller domain
pool. This should be done cautiously, since arbitrary
reduction of the domain pool can cause several
range blocks to be poorly approximated. This will
cause a poor approximation of 7 and will reflect
badly on the distortion between the original image
and the reconstructed one. Our solution is based
on the assumption that for a given range block,
the best domain block will be near the range block,
seemingly because close blocks are more alike than
distant blocks. We therefore work with a dynamic
domain pool, which changes from one range block
to another. The dynamic domain pool consists of
domain blocks which are positioned around the
range block (in the image). We used a sliding
window of 48x48 pixels that was centered on the
range block, and found that bigger windows did
not improve the fidelity of the reconstructed image,
but required moreprocessing time. We also used
small horizontal and vertical shifts (& and &v).
In this way we get a sufficiently large domain
pool which consists of domain blocks that are
'physically” close to the range blocks.

The sytem on which the algorithm is
executed consists of two major parts (Fig.2):

1. an Intel-386sx PC/AT (IBM compatible),25MHz
with 512KB RAM base memory, 2MB extended
memory, S-VGA adaptor and display monitor, to
be referred as host computer (HC). .

2. A DSP board (DSPB), based on the Motorola
DSP96002, with two external memory banks
(connected to ports A and B of the DSP). The
processor is operated with a 12MHz clock.

The two memory banks are of 128KB each,
one is common to the HC (located just above-the
regular 512K upto 640K) and to the DSP (port A)
and the other belongs only to the DSP. The Host

660

Interface of the DSP is mapped as a peripheral

device in the PC address space, and occupies 16

following addresses, enabling the DSP operation

under the HC control and direct data transfer

between the HC and the DSPB.

The DSP96002 is a floating point processor,

working according to IEEE-754 standard single

precision (32-bit) and single extended precision

(44-bit) arithmetic. Detailed architecture

representation of the DSP96002 is beyond the scope

of this paper [8].

Its major features are:

- 6 MIPS (with 12MHz clock)

- 18 MFlops (with 12MHz clock)

- Single-cycle 32x32 bit parallel multiplier

- High parallel instrucrtion set with unique
addressing modes

- Hardware nested DO-loops

- Two independent on-chip 512 word data RAM

- Two independent on-chip 1024 word data ROM

- Off-chip up to 2*2 word of data memory

- On-chip 1024 word program RAM

- On-chip 1024 word program RAM

- On-chip 64 word bootstrap ROM

- Off-chip up to 2*2% word of program memory
- Two identical external memory expansion ports

Sytstem Performance
The algorithm was implemented on the above

system. The system performance will be described
comparing to a simulation running on an Intel PC-
486Dx with 8MB RAM memory, at 33MHz.The
simulation s/w was written in Borland Turbo-C++.
Table 1 shows the ratio between the two systems:

PC-486(33MHz) : DSP96k(12MHz)

Compression:
Pre-Processing 1.74:1
Encoding 491:1

Decompression:
Decoding (20 Iterations) 4.74:1

The same + Displaying 2.0:1

Table 1: Timing ratio between systems

The pre-processing stage consists of image
partition into blocks and classification of the blocks
into 'shade’, 'midrange’ and 'edge’. The classification
occupies about 94% of the pre-processing time.
The preprocessing time is rigid and does not depend
on the image. Using other pre-processing methods

may alter the execution time duration of this part,

e.g. images containing fine textures will demand
longer pre-processing time whereas smooth images
will demand shorter time.

The encoding process is mainly a search
for the best blockwise transformation. It is an image
dependent algorithm, and therefore the encoding
time may vary from one image to another. The
easiest block to encode are the 'shade' blocks



(negligable time) and the most difficult are the -

‘edge’ blocks (twice the time of 'midrange’ blocks).

For example, the time needed for the compression .

of the well known image ‘Lena’ is (using the DSPB)
9'50" (2'10" for the pre-processing and 7'40" for
the encoding), while compressing the same image
on the PC-486 took 41'20" (3'50"for the pre-
processing and 37'3" for the encoding).

A detailed analysis of the encoding process shows
[6] that (as expected) the bottleneck is the search
for domain blocks. The search is conducted over a
small portion of the D-space by checking domain
blocks which are in the neighbourhood of the range
block. A 48x48 pixels window, centered about the
range block, is used to determine the range block's
neighbourhood. The domain window contains 289
domain blocks and this part of the process occupies
about 50% of the encoding time (about 20% is
dedicated for the analysis of 'edge’ blocks).

The decompression is an iterative decoding
process and is much faster then the compression
time (about 30" on the DSPB and 227" with the
PC-486).

A detailed analysis of every stage of the
compression /Decompression processes is available

[61.
Conclysions

We are sure that a more dedicated plan of
the board (with more memory, on-board cache and
2 DSP's) will achieve much better results. It is
important to mention that we ran the DSP at 12MHz
because the board used is a prototype version. The
DSP can run now at 40MHz and this is expected
to improve the results significantly (A board at
this speed is being built now).

Acknowledgment

The work described has been undertaken at the
Signal and Image Processing Laboratory, Faculty
of Electrical Engineering, Thechnion IIT, as part
of final project for 1st degree.

The author wishes tohank Mr. Z.Beharav for his
helpful discussions and Prof. D.Malah for his
valuable notes and support.

References:
[1] A.E.Jacquin, "Image coding based on a fractal

theory of iterated contractive image
transformations”, JEEE Trans. on image proc.
January 1992.

[2] M.F.Bamnsley, A.E.Jacquin, "Application of
Recurrent Iterated FunctionSytsem to Images"
SPIE Visual Comm. & Image Proc.,

(3] B.Ramamurthi, A.gersho, "Classified Vector
Quantization of Images", IEEE Trans. on Comm.,
COM-34,No.11, 1986

{4] M.Barnsley "Fractals Everywhere", Academic
Press Inc, San-Diego, 1988 (Ch.3,6)

661

[5] R.C.Gonzales, P.Wintz, "Digital Image
Processing", Addison-Wesley,2nd Ed., 1987

[6] O.Zifrony, R.Barequet, "Fractal Image
Compression" (Parts A & B), Final Project, Sig.
and Image Proc. Lab, EE Faculty Technion , IIT
[7] Zvi Rozenshein, "Boost PC's Floating-Point
Speed with an Add-On DSP Coprocessor Board"
Electronic Design, Jan.10, 1991,

[8]DSP96002 Users Manual, Motorola, 1992.

Shade Midrange Edge
Figure 1: Types of Blocks
PC
Data D
g Data-Bus 3ta Bus
Bus buffers j
Port Data Bus
PC [om i“n:;‘ DSP96002
Cont{ Arbitration 128KW
Bus & Cf:ntrol .
Logic Port A (control)
Contral Bus {_Port Add.Bus
PC | Address -Bus
Add{ Buffers Address Bus
—Bus
Figure 2: Block Diagram of the Board




