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ABSTRACT
In this paper, we describe an algorithm for estimating heart
rate from an optically measured PPG signal when physical ex-
ercises are performed. In this case, the PPG signal is contami-
nated by motion artifacts caused by hand movements, making
it difficult to find its fundamental frequency that corresponds
to the heart rate. To overcome the noise, a soft decision ap-
proach is taken, by which several candidates for the funda-
mental frequency of the PPG signal are extracted and assigned
grades. By appropriate grade weighting, the candidate having
the maximal grade is selected. The presented algorithm is of
low complexity and shown to provide good results. As such, it
can be used in low-power portable devices for real time heart
rate estimation.

Index Terms— PPG, motion artifacts, heart rate monitor-
ing, signal processing cup

1. INTRODUCTION

Heart rate monitoring during physical exercise has become
increasingly popular recent years. The monitoring is per-
formed using wearable devices, which estimate heart rate
in real time using photoplethysmographic (PPG) signals [1].
These PPG signals are obtained by illuminating the skin by
a light-emitting diode (LED) and measuring changes in light
absorption by a photodiode. As the heart pumps blood through
organs, volumetric changes of organs occur, reflected in peri-
odic variations in measured light intensity. These variations
are used in turn to determine the heart rate, usually in terms of
beats-per-minute (BPM).

However, physical exercises may lead to motion artifacts
in the measured PPG signal, affecting its periodicity and re-
sulting in an erroneous estimation of the heart rate. These ar-
tifacts are difficult to overcome, due to frequency overlapping
between the non-contaminated PPG signal and the motion ar-
tifacts. Several techniques have been proposed for motion ar-
tifacts removal, where a literature survey can be found in [2].
In particular, a method for motion artifacts reduction based on
simultaneous measurement of PPG signal and acceleration is
proposed in [2], where acceleration is measured to better esti-
mate frequency components contributed by motion artifacts.

The aim of this paper is to present an algorithm for heart
rate estimation from PPG signals in presence of motion arti-
facts, by exploiting information obtained from measured ac-
celeration data. The proposed algorithm is based on the use of

soft decision, where grades are assigned to several BPM can-
didates by extracting certain features from the signal. For per-
formance evaluation, we use the training database provided in
[2]. This database contains recordings of 13 subjects perform-
ing various physical exercises, where two-channel PPG sig-
nals, three-axis accelerometer data, and one-channel ECG sig-
nal from the subject’s chest are available for each subject. All
signals were sampled at 125Hz. The heart rate calculated using
the ECG signal serves as ground-truth for performance evalu-
ation of the proposed algorithm. There is also a test database
with 10 subjects, for which ground-truth BPM is not provided.

The paper is structured as follows. In Section 2, the algo-
rithm is presented. Performance evaluation of the algorithm
is provided in Section 3. Finally, the paper is concluded in
Section 4.

2. ALGORITHM DESCRIPTION

In the following ,the proposed algorithm for heart rate estima-
tion from PPG signals is described. As in [2], the signal is par-
titioned into time windows of 8 seconds with an overlapping
of 6 seconds, such that an estimated BPM value is provided
every 2 seconds. The algorithm has two modes of operation:
Rest mode and Activity mode. Rest mode is used when a sub-
ject is at rest, whereas Activity mode is used when a physical
exercise is performed. The transition between the modes is
determined by the algorithm, as will be described in Section
2.2.

A block diagram describing the main parts of the algorithm
is provided in Figure 1. In rest mode, the decision is made by
choosing the spectral peak with the highest amplitude, out of
several candidates. In activity mode, each spectral peak is as-
signed 5 grades, which are later weighted to provide an output.
In the rest of this section, details of the algorithm components
described in Figure 1 are provided.

2.1. Rest mode

In this mode, the noise is assumed to be of relatively low mag-
nitude, affecting the PPG signal only to a small extent. There-
fore, the algorithm in this mode is mainly based on recovering
the periodic components of the PPG signal by analyzing its
spectrum. First, the time series in each of these windows are
decomposed into a sum of time series using singular spectrum
analysis (SSA) [3]. This is performed as described in Section



Fig. 1: Block diagram of the proposed algorithm.

Gender Healthy? BPM range
Male Yes [45, 90]

Male No [78, 150]

Female Yes [48, 90]

Female No [78, 150]

Table 1: Expected BPM range at rest according to gender and
health status (based on [4, 5]).

III-A of [2], by constructing a matrix composed L-lagged vec-
tors.

This matrix is decomposed using singular value decompo-
sition (SVD), producing a basis of time series and their asso-
ciated singular values. The dominant frequencies, considered
as the frequency positions of the global spectral peaks of the
5 time series with the largest singular values, are calculated
for each channel. Note that the corresponding BPM values
are simply obtained by multiplying these frequencies by 60.
In case there are no 5 feasible spectral peaks for each chan-
nel, we perform a short-time Fourier transform (STFT) on the
analysis window after weighting with Hamming windows and
zero-padding to 16, 384 samples to obtain additional spectral
peaks. Gender and health status (with respect to cardiovas-
cular diseases) are used to consider only physically feasible
BPM values among the candidate spectral peaks. Based on
[4, 5], the feasible BPM range at rest is provided in Table 1 (a
tolerance of 15% is allowed).

In addition to SVD and STFT, we use YIN pitch detec-
tion algorithm [6], known to provide good results for the es-
timation of the fundamental frequency of speech or musical
sounds. YIN is based on the autocorrelation method with sev-
eral modifications, making this algorithm robust to errors. In
our case, YIN is used to obtain an additional candidate spectral
peak for the underlying fundamental frequency of the PPG sig-
nal. Finally, out of the extracted spectral peaks, the frequency
of the peak having the largest amplitude is used for estimating
the current BPM.

To ensure a physical behaviour of the estimated BPM
values, we require that the estimated BPM at time window
i should be within λ percent of the BPM estimated at time
window i− 1. The value of λ at rest was set experimentally at
5%. If none of the candidate spectral peaks (estimated for the
two channels) are within λ percent, the previously estimated
BPM value is used as the current estimated value. In this case
λ is increased by 2%, to prevent drift error due to repeated
use of previously estimated BPM values. λ is set again to its
initial value of 5% when the current estimate falls within the
current value of λ compared to the previous estimate.

2.2. Activity mode

In Activity mode, the algorithm described earlier may not
be accurate due to significant motion artifacts. To determine
when to move to this mode, the difference of the acceleration
2-norm of each two consecutive time windows is calculated.
If a difference above 200% is detected, Activity mode is se-
lected. The algorithm keeps track of the acceleration norm,
for detecting transitions to a less/more extensive physical ex-
ercise. This is done by defining a ternary trend parameter ρ,
whose values can be either−1, 0 or 1. If the average norm dif-
ference in the last 8 time windows is above (below) a threshold
ρT (−ρT ), ρ is set to 1 (−1). Otherwise, ρ is set to 0. ρT was
determined experimentally as 0.0012 for the training set and
as 0.005 for the test set, then Activity mode is used.

Each time window is weighted using Hamming window
and its spectrum is produced by applying the STFT. 5 global
spectral peaks with the largest amplitude (for each channel)
are selected from the spectrum amplitude along with an addi-
tional estimate of the fundamental frequency provided by the
YIN algorithm. These 12 frequency values (6 for each chan-
nel) serve as candidates for the estimated BPM. Note that SVD
is not used in this mode, since experimental results showed
no significant improvement over the use of frequency values
obtained using STFT and YIN when motion artifacts are pre-
sented. This implies lower complexity of the algorithm when
physical exercises are performed, making it attractive for real-
time implementation.

Denote by fi,j the jth (j = 1, 2, ..., 6) frequency position
(in Hz) of the candidate spectral peaks selected for channel
i (i = 1, 2). In Activity mode, we consider only fi,j values
corresponding to BPM values smaller than 217−0.85·(Subject
age) [7] (with a tolerance of 10%). To choose the most likely
candidate, we assign grades to each spectral peak frequency
position. In this grading process we take into account features
associated with each fi,j , together with information regarding
the noise, which is provided by the 3-axis accelerometer data.
There are 5 grades for each fi,j , denoted g(t)i,j , where t denotes
the grade index (t = 1, 2, ..., 5). The grades are calculated as
follows.

1. Intensity. The intensity of fi,j is defined as its ampli-
tude (in the STFT domain), denoted Ai,j . The relative
intensity of fi,j is obtained by dividingAi,j by the maxi-
mum amplitude obtained for channel i. The correspond-
ing grade of fi,j , denoted g(1)i,j , is:

g
(1)
i,j =

Ai,j

maxjAi,j
, i = 1, 2. (1)



Note that Ai,j is normalized using the maximum ampli-
tude obtained for channel i only, due to possible scale
variations between channels. According to Equation
(1), fi,j having a higher amplitude is assigned a higher
grade.

2. Spread. The spread of fi,j , denoted Ai,j , is defined as
the energy contained in the the spectrum band centered
at fi,j . The bandwidth is defined as the distance of fi,j
to the nearest local minima. For better estimate of the
spread, a second order polynomial is fitted to the spec-
trum amplitude at fi,j assuming bandwidth as above. To
calculate the grade, we subtract from 1 the normalized
spread of fi,j :

g
(2)
i,j = 1− Si,j

maxjSi,j
, i = 1, 2. (2)

This way, a lower spread results in a higher grade.

3. Acceleration. This grade is calculated as the normal-
ized minimal distance of fi,j from the 2 dominant fre-
quency components of the acceleration signal (for each
axis). The underlying assumption is that these compo-
nents are related to motion artifacts, such that fi,j is
likely to be noise if it is close to the acceleration dom-
inant frequencies. Denoting the acceleration frequency
components by ak,l (k = 1, 2, 3 refers to the axis index
and l = 1, 2 refers to the frequency index), the grade of
fi,j is calculated as:

g
(3)
i,j =

mink,l |fi,j − ak,l|
maxi,j (mink,l |fi,j − ak,l|)

. (3)

4. Harmonics. As observed in [8], the motion artifacts
have higher harmonic content compared to the PPG sig-
nal. Therefore, fi,j will be given a lower grade if there
are other frequency positions which are integer multi-
ples of fi,j (a tolerance of 25% is allowed). If there are
no such integer multiples, g(4)i,j is set to 1. Otherwise,
denote by hk,l the detected harmonics of fi,j . The grade
in this case is calculated as the sum of distances to the
harmonics, normalized by the number of harmonics:

g
(4)
i,j =

∑
l

|fi,j − hk,l|

#hk,l
. (4)

This way, as the harmonics hk,l are close to fi,j and as
their number grows, g(4)i,j will be lower, since fi,j will be
attributed as noise.

5. History. The aim of this grade is to ensure physical
behaviour of the estimated BPM. That is, if fi,j is not
within λ percent of the previously estimated signal, its
grade would be g(5)i,j = 0. Otherwise, its grade is cal-
culated as the normalized distance to the previously es-
timated heart rate frequency. Since heart rate variation
is higher when a physical exercise is performed, we set
λ = 12% in Activity mode. In addition, we use the trend
parameter ρ for improving the prediction. For example,
if some fi,j is larger than the previously estimated fre-
quency by less than λ percent and ρ = 1, then its history

grade is doubled. If ρ = −1, then the grade is reduced
by a factor of 2.

Finally, we choose the fi,j with the maximal weighted
grade, and calculate the estimated BPM value by multiply-
ing it by 60. Experimentally, the grade weights were set to
0.6, 0.8, 0.8, 0.4, 1 for grades 1, 2, 3, 4, 5, respectively.

3. EXPERIMENTAL RESULTS

The performance of the proposed algorithm was evaluated us-
ing the training database, by comparing the estimated BPM
to the ground-truth provided by the ECG signal. Denote the
estimated BPM value at time window i by BPMest (i), the
ground-truth BPM by BPMtrue (i), and the number of time
windows by N . The measurement index we pursue here is the
average absolute error, defined as [2]:

µ =
1

N

N∑
i=1

|BPMest (i)− BPMtrue (i)|. (5)

The results for the training set are provided in Table 2, us-
ing the error definition of Equation (5). For comparison, the
results of [2] are provided as well, where the best case for each
subject is marked in bold. The results show the overall good
performance of the proposed algorithm, with an average er-
ror of 3.04. Taking into account the first 12 subjects only (as
in [2]), the average error of the proposed algorithm is 2.85,
compared to 2.34 in [2]. Note that the proposed algorithm is
significantly less complex than the algorithm presented in [2],
in which SSA is performed for each time window and sparse
signal reconstruction is required.

The algorithm operation is demonstrated in Figure 2 for
Subject 3 and Subject 13 from the training set. Good BPM es-
timate is obtained for Subject 3 (Figure 2a), since his ground-
truth BPM curve is relatively smooth, without abrupt changes.
However, the ground-truth BPM curve of Subject 13 (Figure
2b) changes fast, with abrupt changes even when the same
physical exercise is performed (likely indicating Arrhythmia).
This makes the estimation process difficult, such that BPM
changes are not well captured. It is expected that the perfor-
mance of the algorithm for the test data would be more accu-
rate in tracking BPM changes, since gender/age/health status
are provided for the data set subjects. Examples for BPM esti-
mation results for the test set are provided in Figure 3.

4. CONCLUSION

In this paper, we proposed an algorithm for estimating heart
rate from a dual-channel PPG signal, when physical exercises
are performed. Based on the selected mode (Rest/Activity) of
the algorithm, it provides several candidates for the heart rate
at each time interval. The most likely candidate is selected
based on features extracted from the signal and on previously
estimated BPM values, by assigning a weighted grade to each
candidate. Information regarding age, gender and health status
is incorporated in the decision process for improved accuracy.
The proposed algorithm is of low-complexity and can be effi-
ciently implemented in hardware. The algorithm is modular as
well, where grades can be omitted/added according to the al-
lowed complexity when real-time constraints are considered.



Method/Subject 1 2 3 4 5 6 7 8 9 10 11 12 13
Proposed algorithm 2.22 1.26 0.91 1.69 2.64 3.00 1.10 4.31 6.29 6.02 2.27 2.50 5.43

TROIKA [2] 2.29 2.19 2.00 2.15 2.01 2.76 1.67 1.93 1.86 4.70 1.72 2.84 –

Table 2: Average absolute error on the training database.

(a) Subject 3. (b) Subject 13.

Fig. 2: Examples of training set BPM estimation results.

(a) Subject 2. (b) Subject 5.

Fig. 3: Examples of test set BPM estimation results.
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