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The basic idea behind single sensor source separation is trying to
extract sources from their mixture.

In this project, we will focus on a codebook based method for
source separation.

The main assumption of this method is that each source can be
represented by a dictionary.

This assumption simplifies the separation process .
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Solution

The solution relies on building a statistical model of the audio sources:
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Gaussian Mixture Models (GMM)

Gaussian mixture prior density:
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Observation is obtained by:

1. Selecting one active component.
According to priori probabilities {a)(')}

2. Generating Gaussian observatioi/\

This model permits dealing with multiple covariance
matrices corresponding to multiple PSD shapes.



Gaussian Scaled Mixture Models
(GSMM)

Gaussian scaled mixture prior density:
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Source Separation In GSMM case

posterior probabilities of
components (i, j):
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Separation Algorithm implementation

Audio Sources are locally stationary in general.
It is natural to work with the short-time Fourier transform (STFT).

STFT is linear so the mixing equation can be expressed as:

SX(t, f) = Ss, (t, f)+Ss, (t, f)+Sb(t, f)

The covariance matrices gl »{) assumed to be diagonal (in the

STFT domain), with running elements o (f)?, oV (f)?
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PM Estimator:
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= Using E-M algorithm, model parameters of each source are
estimated separately:

1. PSD of each Gaussian component.

2. Priori probability of each component.

Example:
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Separation example

X = cello+ guitar
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Frequency components from the cello can be
found in the separated guitar spectrogram.
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Improvement: Separation in several frequency bands

= Splitting the frequency domain into several frequency bands.
= Performing separation in each band separately.

= Advantages:

= Better local resemblance (in frequency domain) between the
mixture and the codebook representatives.

=  Working with lower dimension Gaussian vectors.

= Effectively larger codebook.
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Conclusions

We have presented a codebook based algorithms for single
source separation.

The main assumption of this method is that each source can
be represented by a dictionary.

GMM have been used:

» each source is represented by “typical” PSD and their
priori probabilities.

We have shown that this model is too simplistic for music
Instruments:

= There is no “close enough” representative in the
codebook.

= Music instruments PSDs are too diverse for this model.

There Is a need to use a more adequate model for music

Instrument, that takes into account their properties. .



