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Introduction

 The basic idea behind single sensor source separation is trying to 

extract sources from their mixture.

 In this project, we will focus on a codebook based method for 

source separation.

 The main assumption of this method is that each source can be 

represented by a dictionary.

This assumption simplifies the separation process .
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The solution relies on building a statistical model of the audio sources:
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Gaussian Mixture Models (GMM)
Gaussian mixture prior density:
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Observation is obtained by:

1. Selecting one active component. 

According to priori probabilities

2. Generating Gaussian observation.

This model permits dealing with multiple covariance 

matrices corresponding to multiple PSD shapes. 

 ( )i



5

Gaussian Scaled Mixture Models 

(GSMM)
Gaussian scaled mixture prior density:
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 is a positive gain factor.

 Separates the PSD shape 

from the amplitude 

information.
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Source Separation in GSMM case
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Estimating the most probable gain 

factors for each pair of active 

components.
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Calculating the probability of each 

pair of active components, given 

the observation    .
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 Audio Sources are locally stationary in general.

 It is natural to work with the short-time Fourier transform (STFT).

 STFT is linear so the mixing equation can be expressed as:

 The covariance matrices assumed to be diagonal (in the 

STFT domain), with running elements 

Separation Algorithm implementation
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PM Estimator:

MAP Estimator:
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 Using E-M algorithm, model parameters of each source are 

estimated separately:

1. PSD of each Gaussian component.

2. Priori probability of each component.

Example: 
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 Frequency components from the cello can be 

found in the separated guitar spectrogram.

Separation example

x cello guitar 
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 Splitting the frequency domain into several frequency bands.

 Performing separation in each band separately.

 Advantages:

 Better local resemblance (in frequency domain) between the 

mixture and the codebook representatives.

 Working with lower dimension Gaussian vectors.

 Effectively larger codebook.

Improvement: Separation in several frequency bands
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Conclusions
 We have presented a codebook based algorithms for single 

source separation.

 The main assumption of this method is that each source can 

be represented by a dictionary.

 GMM have been used:

 each source is represented by “typical” PSD and their 

priori probabilities.

 We have shown that this model is too simplistic for music 

instruments:

 There is no “close enough” representative in the 

codebook.

 Music instruments PSDs are too diverse for this model.

 There is a need to use a more adequate model for music 

instrument, that takes into account their properties.


