

Multi-Channel Speech Enhancement in Noisy Environments

SIPL Annual Projects Presentation June 23, 2010

Nir Kahana & Liav Levi

Supervisor: Ronen Talmon

In association with: Israel Police Dept.

- Problem Description
- Optional Solutions
- Proposed Solution
- Performance Evaluation
- Conclusions

Problem Description

$$Y_{p}(k,\ell) = S(k,\ell) + R_{pi}(k)I(k,\ell) + R_{pn}(k)N(k,\ell)$$
$$Y_{r}(k,\ell) = I(k,l) + R_{rs}(k)S(k,\ell) + N(k,\ell)$$

- Problem Description
- *****Optional Solutions
- Proposed Solution
- Performance Evaluation
- Conclusions

Optional Solutions

- Single-source methods
 - Spectral Subtraction [Lim & Oppenheim, 1979]
 - OM-LSA [Cohen & Berdugo, 2001]
- Multi-source methods
 - Beamforming
 - Not suitable, requires a microphone-array
- Make our own solution
 - Based on OM-LSA
 - Modification for multi-channel
 - Exploit measurements from other microphones

Optional Solutions

$$Y_{p}(k,\ell) = S(k,\ell) + R_{pi}(k)I(k,\ell) + R_{pn}(k)N(k,\ell)$$

$$Y_{r}(k,\ell) = I(k,l) + R_{rs}(k)S(k,\ell) + N(k,\ell)$$

- Problem Description
- Optional Solutions
- Proposed Solution
- Performance Evaluation
- Conclusions

Naive Solution

8

Proposed Solution

Hypotheses and Gain Function

Consider four hypotheses:			$S(k,\ell)$ Source	
			Absent	Present
	$Iig(k,\ellig)$	Absent	$H_1ig(k,\ellig)$	$H_3ig(k,\ellig)$
	Interferance	Present	$H_2ig(k,\ellig)$	$H_{4}ig(k,\ellig)$

Final estimation is given by a gain function:

$$\hat{S}(k,\ell) = G(k,\ell)Y_p(k,\ell)$$

$$\left|G(k,\ell) = G_{H_4}^{p_4}(k,\ell) \cdot G_{H_3}^{p_3}(k,\ell) \cdot G_{\min}^{p_2+p_1}(k,\ell)\right|$$

Proposed Solution

- Problem Description
- Optional Solutions
- Proposed Solution
- Performance Evaluation
- Conclusions

Simulated Signals

Real Signals

Performance Evaluation

Interfering noise volume varies

- Problem Description
- Optional Solutions
- Proposed Solution
- Performance Evaluation
- *****Conclusions

Conclusions

- Multi-channel speech enhancement in noisy environments
- Modification of the OM-LSA for multi-channel
- Good performance
- *Following the same principals, the proposed algorithm can be expanded for any number of speakers and microphones

Thank you for listening!

Want to know some more?

Visit the project's website at:

http://sipl.technion.ac.il/