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Abstract

- Tracking systems are necessary for
surveillance, traffic control and multiple
computer vision applications




Problem Definition
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Background Modeling and
Pedestrian Segmentation
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Background Modeling and
Pedestrian Segmentation
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Improved Foreground Image



Background Modeling and
Pedestrian Segmentation

Foreground Detection in scenes with massive moving background and shades



Single Camera Tracking
Motion Mode - Kalman Filter
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Tracker Data — Appearance Model

> Sampling the target uniformly

> Extracting features from samples
= Color features
= Texture features
= Spatial features

Threshold Multiply

2 0 3 0 0 1 32 | 64 | 128 0 0 | 128

LBP = 1+2+4+8+128 = 143
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Tracker Data — Appearance Model

> Multi-Variable Kernel Density Estimation — Estimating
probability density function in the feature space:

> KL Distance — Calculating the similarity between a new
detection and the model :

hu(2)
P(2)

Dy, (P, 5.) =] by (2)log=
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Part A - Single Camera
_Appearance Mode



Part A - Tracking Demonstration
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http://www.youtube.com/watch?v=nV_ao6Sl3x0

Part B - Multiple Cameras
Tracking Scheme
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3D Pedestrian Detector

> Blobs Analysis :

° |n each view, image coordinates of each blob’s
lowest point are converted to world coordinates

> blobs’ lowest point is assumed to be in Z =0 plane
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15 Image 2D-Coordinates to Top-View World 3D-Coordinates
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3D Pedestrian Detector
Camera Projection

» Goal: Estimating the 3D geometry of the scene from the

2D images
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3D Pedestrian Detector
Camera Projection
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3D Pedestrian Detector
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3D Pedestrian Detector

Starting with random blob
from view with least
occlusions
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3D Pedestrian Detector

Nearest blob from next view is
labeled as a part of the detection
(group average location is calculated)
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3D Pedestrian Detector
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Nearest blob from next view is too far from

current average location — not labeled
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3D Pedestrian Detector

Labeled blobs are signed as a

detection and deleted
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3D Pedestrian Detector

Detection #1

Labeled blobs are signed as a

detection and deleted
L
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3D Pedestrian Detector
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3D Pedestrian Detector
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3D Pedestrian Detector

o Ty
124 ~
4 \
U4
1§ )
\
N /
Saf=”

26



3D Pedestrian Detector

Detection #2
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Part B - Multiple Cameras
Tracking Scheme
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Greedy Data Association

Example:

Detection

Detection

Detection

World distance and KL-Distance are

Tracker 1

Tracker 2

Tracker 3

0.70 0.20 0.60
0.65 0.80 0.75
0.15 0.70 0.55

weighted for creating a score function for
each Detection-Tracker pair




Greedy Data Association
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Greedy Data Association
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Greedy Data Association
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Greedy Data Association
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Greedy Data Association




Greedy Data Association
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Greedy Data Association
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Greedy Data Association
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Occlusions Segmentation
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Frame #n — Real Foreground | Frame #n+1 — Estimated Foreground

Frame #n+1 — Real Foreground Frame #n+1 — Occlusion Segmentation







Part B - Tracking Demonstration
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http://www.youtube.com/watch?v=HAq9blY0cxw
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Experimental Results

- System was mainly tested on PETS 2010 S2.L1
dataset

- Results were evaluated against single view (view
#1) ground truth data

- The evaluation used the following metrics[8]:
o MOTA (Multiple Object Tracking Accuracy)

o MOTP (Multiple Object Tracking Precision)
Evaluation Results: °°
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Conclusion

- A multiple targets tracking system has been
developed and implemented

- Novel pedestrian detection method has been
developed

- Novel Tracking-by-Detection method was developed
— Trackers’ data is used for next frames pedestrian
detection

- The solution involved multi camera input handling,
using homography tools

- The system includes a re-identification capability,
using a probabilistic appearance model

- The Algorithm was tested and evaluated using
ground truth data according to CLEAR-MOT metrics



