

Multi-Camera People Tracking and Re-Identification within a Crowd

Students : Ofer Geva & Matan Sela Supervisor : Yair Moshe In Association with: Mango DSP

Abstract

 Tracking systems are necessary for surveillance, traffic control and multiple computer vision applications

Problem Definition

Sparse Crowd

Medium Density Crowd

Dense Crowd

Part A - Single Camera Tracking Scheme

Background Modeling and Pedestrian Segmentation

Motion Foreground

HoG Confidence Function

Background Modeling and Pedestrian Segmentation

Improved Foreground Image

Background Modeling and Pedestrian Segmentation

Foreground Detection in scenes with massive moving background and shades

Single Camera Tracking Motion Mode – Kalman Filter

Tracker Data – Appearance Model

Sampling the target uniformly

Extracting features from samples

- Color features
- Texture features
- Spatial features

LBP = 1+2+4+8+128 = 143

Tracker Data – Appearance Model

Multi-Variable Kernel Density Estimation – Estimating probability density function in the feature space:

$$\hat{p}(\underline{z}) = \frac{1}{N_p \sigma_1 \dots \sigma_n} \sum_{i=1}^{N_p} \prod_{j=1}^n \kappa \left(\frac{z_j - s_{ij}}{\sigma_j} \right)$$

KL Distance – Calculating the similarity between a new detection and the model :

$$D_{KL}\left(\hat{p}_{b} \mid \hat{p}_{a}\right) = \int \hat{p}_{b}\left(\underline{z}\right) \log \frac{\hat{p}_{b}\left(\underline{z}\right)}{\hat{p}_{a}\left(\underline{z}\right)} d\underline{z}$$

Part A - Single Camera Appearance Mode

Part A - Tracking Demonstration

Part B - Multiple Cameras **Tracking Scheme** Foreground Segmentation Foreground Foreground Blobs Estimations

Motion & Appearance Models Trackers Detections Detector

- Blobs Analysis :
 - In each view, image coordinates of each blob's lowest point are converted to world coordinates
 - blobs' lowest point is assumed to be in Z = 0 plane

Image 2D-Coordinates to Top-View World 3D-Coordinates

Camera Projection

Goal: Estimating the 3D geometry of the scene from the 2D images

Camera Projection

Part B - Multiple Cameras **Tracking Scheme** Foreground Segmentation Foreground Foreground Blobs Estimations

Example:	Tracker 1	Tracker 2	Tracker 3
Detection 1	0.70	0.20	0.60
Detection 2	0.65	0.80	0.75
Detection 3	0.15	0.70	0.55

World distance and KL-Distance are weighted for creating a score function for each Detection-Tracker pair

Occlusions Segmentation

Frame #n+1 – Occlusion Segmentation

Tracking Demonstration

Part B - Tracking Demonstration

Experimental Results

- System was mainly tested on PETS 2010 S2.L1 dataset
- Results were evaluated against single view (view #1) ground truth data
- The evaluation used the following metrics[8]:
 - MOTA (Multiple Object Tracking Accuracy)
 - MOTP (Multiple Object Tracking Precision)
 Evaluation Results: ^{0.8}

Conclusion

- A multiple targets tracking system has been developed and implemented
- Novel pedestrian detection method has been developed
- Novel Tracking-by-Detection method was developed – Trackers' data is used for next frames pedestrian detection
- The solution involved multi camera input handling, using homography tools
- The system includes a re-identification capability, using a probabilistic appearance model
- The Algorithm was tested and evaluated using ground truth data according to CLEAR-MOT metrics