
Change Detection Using
3D Line Segments

By: Ido Ariav and Tom Zohar

Supervisor: Dr. Meir Bar Zohar

Spring semester, 22/05/2012
1

Agenda

• The Purpose of the Project

• The Problem and the Solution

• Part A - review

• Building a wire-frame model

• Change detection

• Results and Conclusions

• Future Work

2

Project Purpose

• Given a set of images of a certain scene (in our case – cars in a
parking lot), build a 3D model of that scene, based on line segment
matching of the scene in all of the images.

• The images can be taken several hours apart, from arbitrary points
of view and may have different lighting conditions (linear change).

• Reconstruct wire-frame models of cars in the 3D model .

• Detect changes in a given image based on the 3D model built using
the set of learning images (unsupervised).

3

The Problem and the Solution

• Problem – The change detection problem can become unreliable
and not robust when dealing with images from multiple views and
different lighting conditions.

• Solution – Compose the change detection algorithm based on a 3D
model of the scene using only 3D line segment (geometric solution)

• Advantages:
- Efficient - Detecting straight lines is computationally much less

complicated then calculating correlation of all points in the images.
- Robust - The 3D properties are independent of point of view and linear

lighting conditions.
- Reliable – a geometric solution for change detection is less sensitive to

noise than one that is based on gray level comparison
- Versatile - The use of line segments is suitable for a variety of scenarios

(cars, structures, roads, etc.).

4

Part A - review

5

Algorithm for Solution

6

Calculate
Fundamental and
calibrated camera
matrices for each

image

A set of training
images

Find all line
segments in each
image using the

Hough transform

Using epipolar
constraints and cross-

correlation find all
corresponding lines

between images

Reconstruct 3D scene
using only line segments
with correspondences in

all 3 images

Improve camera
matrices and 3D

reconstruction using a
non-linear algorithm

Build wire-frame
model and change
detection – Part B

Line segments
extracted in each

image

Fundamental
and camera

matrices

Set of lines
with matches
in all images

Reconstructed
3D line

segments

Improved 3D
line segments

Non-Linear Optimization

• To improve our 3D reconstruction we use Nelder-Mead
method to minimize the following cost function

• 𝑑𝑙 is the distance between the line and the 3D line
reprojected as an infinite line.

• 𝑑𝑠 is the distance between the line and the 3D line
reprojected as a finite line.

7

8

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

linear Triangulation

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

non-linear Triangulation

After non-linear algorithm

After linear reconstruction

3 images training set

9

10

-0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

non-linear Triangulation

-0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

non-linear Triangulation

3D reconstruction after
non-linear algorithm

Part B

11

Wire-frame models

• Use the scene’s geometrical properties to link
together close lines an form objects – to
overcome degeneracies.

• 2 types of thresholds – in 2D and in 3D.

• Total reprojection error for all 3 views
decreases.

12

Wire-frame models - Algorithm

• Pick a line - 𝑙, and place it in a new object - 𝑜.
• Find a line segment 𝑙′ that doesn’t belong to 𝑜, which endpoint hold

the closeness criterion in 3D and the closeness criterion in 2D to
one of the endpoints of 𝑙.
– For each 𝑙′ found, join the 2 close endpoints by moving the

endpoint of 𝑙′ to the close endpoint of 𝑙. Add 𝑙′ to object 𝑜.

• Solve the optimization problem for each object:

𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑉∈𝑅3𝑁𝑉 𝑑𝑙 𝑙𝑖𝑒 , 𝑙𝑖𝑒

′𝑛
𝑖=1 + 𝛽 𝑑𝑠 𝑙𝑖𝑒 , 𝑙𝑖𝑒

′′𝑛
𝑖=1𝑒∈𝐸

Where 𝑁𝑉 is the number of vertices in a wireframe model and 𝑙𝑖𝑒 is
the line in the 𝑖𝑡ℎ image associated with edge 𝑒 ∈ 𝐸 in graph
𝐺 = (𝑉, 𝐸).

13

14

-0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13

-0.03

-0.02

-0.01

0

0.01

0.02

non-linear Triangulation

-0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13

-0.03

-0.02

-0.01

0

0.01

0.02

Wire Frame Model - 1 Car

Change detection

• Our goal is to correctly identify 3 types of
changes –

• “Not-Changed” an object that exists both in
the 3D scene and in the test image.

• “Changed (new)” an object that exists in the
test image but not in the 3D scene.

• “Changed (removed)” an object that exists in
the 3D scene but does not exist in the test
image.

15

Change Detection - Algorithm

16

2D lines
from test

image

If distance to closest
projection (𝑑𝑠) < t1

If distance to closest
projection (𝑑𝑠) > t1

If distance to closest 2D line
in learning image (𝑑𝑆) < t2

If distance to closest 2D line
in learning image (𝑑𝑠) > t2

17

T2 - Example

Image 3 Test Image

Line segment that appears in image 3
(marked by arrow) but was not used for 3D
reconstruction, exists in test in image as
well (right picture).

2 epipolar beam (orange lines) mapped to
the test image from the line segment in
Image 3, and a 4 pixel radius threshold, 𝒕𝟐
(green circles) being kept by the line
marked with a green arrow.

 Image 3 – With its
estimated line

segments

 Test image – After T1:
Red – “not changed”

Blue – “changed”

Change Detection – Algorithm cont.

18

3D lines from
reconstructed scene

If distance of projection to
closest 2D line (𝑑𝑠) < t3

If distance of projection to
closest 2D line (𝑑𝑠) > t3

KNN Algorithm

• Improve results of lines’ state (after test T1,T2
and T3) with a 2D & 3D KNN algorithm:

1. For every 2D line in test image change state
according to majority of N closest 2D lines.

2. For every 3D line in 3D scene, change state
according to majority of N closest 3D lines.

3. Eventually we chose to work with N=15

19

KNN Algorithm - results

20

state of 2D lines in image n+1 after T1 test state of 2D lines in image n+1 after T1 & T2 & KNN tests

A B

-0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

state of 3D lines after T3 test

-0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

state of 3D lines after T3 & KNN tests

A B

Results – Disappearance test image

21

state of 2D lines in image n+1 after T1 & T2 tests state of 2D lines in image n+1 after T1 & T2 & KNN tests

A B

D C

A- test image B – “ground truth” of changes occurred in the test image
C – result after tests T1 & T2 D – results after applying the KNN algorithm

Results – Disappearance test image

22

-0.25 -0.2 -0.15 -0.1 -0.05

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

state of 3D lines after T3 test

A B

D C

-0.25 -0.2 -0.15 -0.1 -0.05

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

state of 3D lines after T3 & KNN tests

A- test image B – “ground truth” of changes occurred in the test image
C – result after test T3 D – results after applying the KNN algorithm

Results – Appearance test image

23

state of 2D lines in image n+1 after T1 & T2 & KNN testsstate of 2D lines in image n+1 after T1 & T2 tests

A B

D C

A- test image B – “ground truth” of changes occurred in the test image
C – result after tests T1 & T2 D – results after applying the KNN algorithm

Results – Appearance test image

24

A B

D C

-0.25 -0.2 -0.15 -0.1 -0.05

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

state of 3D lines after T3 test

-0.25 -0.2 -0.15 -0.1 -0.05

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

state of 3D lines after T3 & KNN tests

A- test image B – “ground truth” of changes occurred in the test image
C – result after test T3 D – results after applying the KNN algorithm

Future Work

• Automation – replace all manual supervised
work with unsupervised algorithms (interest
point detection such as SIFT etc.)

• Object recognition – add an object recognition
ability. Will help improve change detection
process and overall information gain from the
algorithm

• Test on other scene types – buildings, roads,
aerial photos etc.

 25

References

• R. Hartly, A. Zisserman : Multiple view geometry in computer
vision, 2nd edition, Cambridge university press (2003)

• I.Eden, D.B.Cooper : using 3D line segments for robust and
efficient change detection from multiple noisy images, from
ECCV part IV (2008)

• C. Baillard, C. Schmid, A. Zisserman and A. Fitzgibbon :
Automatic line matching and 3D reconstruction of buildings
from multiple views, from ISPRS p69-p80 (1999)

• C.Schmid , A.Zisserman : Automatic Line Matching across
Views, from CVPR (1997)

26

BACKUP

27

Epipolar Geometry

28

Epipole

Epipolar
plane

Epipolar line

• 𝑑𝑙(𝑙, 𝑙
′) =

1

𝑙
 𝑑𝑝

2(𝑝, 𝑙′)𝑝∈𝑙

Where 𝑑𝑝 is the perpendicular distance of a point (p) to an infinite 2D line.
The line segment 𝑙 is divided to points 𝑝 and an average of the point to
line distances is calculated.

• 𝑑𝑠 𝑙, 𝑙
′′ =

1

𝑙
 𝑑𝑝𝑠

2 (𝑝, 𝑙′′)𝑝∈𝑙 +
1

𝑙′′
 𝑑𝑝𝑠

2 (𝑝′′, 𝑙)𝑝′′∈𝑙′′

Where 𝑑𝑝𝑠 is the minimum distance between a point and a line segment.

Both line segments 𝑙 𝑎𝑛𝑑 𝑙′′ are divided into points 𝑝 𝑎𝑛𝑑 𝑝′′ and an
average of the point-to-line-segment distances is calculated for both lines.

29

Line Metric

