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Project Purpose 

• Given a set of images of a certain scene (in our case – cars in a 
parking lot), build a 3D model of that scene, based on line segment 
matching of the scene in all of the images. 

 

• The images can be taken several hours apart, from arbitrary points 
of view and may have different lighting conditions (linear change).  

 

• Reconstruct wire-frame models of cars in the 3D model . 

 

• Detect changes in a given image based on the 3D model built using 
the set of learning images (unsupervised). 
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The Problem and the Solution 

• Problem – The change detection problem can become unreliable 
and not robust when dealing with images from multiple views and 
different lighting conditions. 
 

• Solution – Compose the change detection algorithm based on a 3D 
model of the scene using only 3D line segment (geometric solution) 

• Advantages: 
- Efficient - Detecting straight lines is computationally much less 

complicated then calculating correlation of all points in the images. 
- Robust - The 3D properties are independent of point of view and linear 

lighting conditions. 
- Reliable – a geometric solution for change detection is less sensitive to 

noise than one that is based on gray level comparison 
- Versatile - The use of line segments is suitable for a variety of scenarios 

(cars, structures, roads, etc.).  
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Part A - review 
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Algorithm for Solution 
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Non-Linear Optimization 

• To improve our 3D reconstruction we use Nelder-Mead 
method to minimize the following cost function 

 

 

 

• 𝑑𝑙  is the distance between the line and the 3D line 
reprojected as an infinite line. 

 

• 𝑑𝑠 is the distance between the line and the 3D line 
reprojected as a finite line. 
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Part B 
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Wire-frame models 

• Use the scene’s geometrical properties to link 
together close lines an form objects – to 
overcome degeneracies. 

• 2 types of thresholds – in 2D and in 3D. 

• Total reprojection error for all 3 views 
decreases. 
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Wire-frame models - Algorithm 

• Pick a line - 𝑙, and place it in a new object - 𝑜. 
• Find a line segment 𝑙′ that doesn’t belong to 𝑜, which endpoint hold 

the closeness criterion in 3D and the closeness criterion in 2D to 
one of the endpoints of 𝑙. 
– For each 𝑙′ found, join the 2 close endpoints by moving the 

endpoint of 𝑙′ to the close endpoint of 𝑙. Add 𝑙′ to object 𝑜. 
 

• Solve the optimization problem for each object: 
 
𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑉∈𝑅3𝑁𝑉   𝑑𝑙 𝑙𝑖𝑒 , 𝑙𝑖𝑒

′𝑛
𝑖=1 + 𝛽 𝑑𝑠 𝑙𝑖𝑒 , 𝑙𝑖𝑒

′′𝑛
𝑖=1𝑒∈𝐸   

 
Where 𝑁𝑉 is the number of vertices in a wireframe model and 𝑙𝑖𝑒  is 
the line in the 𝑖𝑡ℎ image associated with edge 𝑒 ∈ 𝐸 in graph 
𝐺 = (𝑉, 𝐸). 
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Change detection 

• Our goal is to correctly identify 3 types of 
changes –  

• “Not-Changed” an object that exists both in 
the 3D scene and in the test image. 

• “Changed (new)” an object that exists in the 
test image but not in the 3D scene. 

• “Changed (removed)” an object that exists in 
the 3D scene but does not exist in the test 
image. 
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Change Detection - Algorithm 
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2D lines 
from test 

image 

If distance to closest 
projection (𝑑𝑠) < t1 

If distance to closest 
projection (𝑑𝑠) > t1 

If distance to closest 2D line 
in learning image (𝑑𝑆) < t2 

If distance to closest 2D line 
in learning image (𝑑𝑠) > t2 
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T2 - Example 

Image 3 Test Image

Line segment that appears in image 3 
(marked by arrow) but was not used for 3D 
reconstruction, exists in test in image as 
well (right picture). 

2 epipolar beam (orange lines) mapped to 
the test image from the line segment in 
Image 3, and a 4 pixel radius threshold, 𝒕𝟐 
(green circles) being kept by the line 
marked with a green arrow. 

 Image 3 – With its 
estimated line 

segments 

 Test image – After T1: 
Red – “not changed” 

Blue – “changed” 



Change Detection – Algorithm cont. 
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3D lines from 
reconstructed scene 

If distance of projection to 
closest 2D line (𝑑𝑠) < t3 

If distance of projection to 
closest 2D line (𝑑𝑠) > t3 



KNN Algorithm 

• Improve results of lines’ state (after test T1,T2 
and T3) with a 2D & 3D KNN algorithm: 

1. For every 2D line in test image change state 
according to majority of N closest 2D lines. 

2. For every 3D line in 3D scene, change state 
according to majority of N closest 3D lines. 

3. Eventually we chose to work with N=15 
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KNN Algorithm - results 
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Results – Disappearance test image 
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A- test image    B – “ground truth” of changes occurred in the test image 
C – result after tests T1 & T2     D – results after applying the KNN algorithm 



Results – Disappearance test image 
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Results – Appearance test image 
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Results – Appearance test image 
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Future Work 

• Automation – replace all manual supervised 
work with unsupervised algorithms (interest 
point detection such as SIFT etc.) 

• Object recognition – add an object recognition 
ability. Will help improve change detection 
process and overall information gain from the 
algorithm 

• Test on other scene types – buildings, roads, 
aerial photos etc. 
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BACKUP 
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Epipolar Geometry 
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Epipole 

Epipolar 
plane 

Epipolar line 



• 𝑑𝑙(𝑙, 𝑙
′) =

1

𝑙
 𝑑𝑝

2(𝑝, 𝑙′)𝑝∈𝑙   

 
Where 𝑑𝑝 is the perpendicular distance of a point (p) to an infinite 2D line. 
The line segment 𝑙 is divided to points 𝑝 and an average of the point to 
line distances is calculated.  

  

• 𝑑𝑠 𝑙, 𝑙
′′ =

1

𝑙
 𝑑𝑝𝑠

2 (𝑝, 𝑙′′)𝑝∈𝑙 +
1

𝑙′′
 𝑑𝑝𝑠

2 (𝑝′′, 𝑙)𝑝′′∈𝑙′′  

 
Where 𝑑𝑝𝑠 is the minimum distance between a point and a line segment. 

Both line segments 𝑙 𝑎𝑛𝑑 𝑙′′ are divided into points 𝑝 𝑎𝑛𝑑 𝑝′′ and an 
average of the point-to-line-segment distances is calculated for both lines. 
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Line Metric 


