Face Detection in Video

Students: Eran Hertzberg & Tal Kenig
Supervisor: Asaf Cohen
Escorting Company: RadVision
Presentation Date: 6/22/2005
Spring 2004, Signal & Image Processing
Laboratory

What is Face Detection ?

Face detection is

a domain of image processing,
aimed at finding human faces

in visual data
Possible commercial applications

for a face detector:

- Multi Participant Video Conference
- Cellular Video Conference
- Variable bit-rate image compression
- Face recognition system

Project Definition

Automatic face detection in video stream

- > Requirements:
 - Real time implementation
 - Robustness to: Glasses, Mustache,
 - Beard, Hat
 - Race invariant
 - Lighting invariant
 - Color saturation invariant

Project Definition: Simplifying Assumptions

Only upfront faces

Single face in an Image

> Whole face in picture

Decompressed video

Available Solutions

Linear subspace methods

Color based analysis

Motion based analysis & tracking

Rejected Solution: Linear subspace methods

The method: Determining the likelihood of a certain region in the frame being a human face, based on shape and patterns.

> Why rejected ?

• Computationally expensive (preprocessing and algorithms)

• Does not utilize the color and motion data included in color video scenes

Not suitable for real-time applications
Ideal for grayscale still images

Chosen Solution:
 Color based analysis
 ➤ The method: Determining the likelihood of a certain pixel belonging to human skin.

Chosen technique:

• Statistical human skin color model by Jones & Rehg

 Chosen Solution: Statistical human skin color model by Jones & Rehg
 ➢ Histogram based color model:
 256³ bins RGB color space

Chosen Solution: Statistical human skin color model by Jones & Rehg ≻ Gaussian mixture model:

Originally 256³ bins RGB color space, we utilize a 64³ bins RGB reduced color space

Chosen Solution: Motion based analysis & tracking

➤ The method: Human faces are more likely to exhibit high motion than the background

original movie

motion vectors norm

 \succ The use of decompressed video stream allows us access to motion vectors without computational cost

➢ MVs are used by the proposed system in two different ways:

- Checking if a suspected skin pixel is in motion
- Tracking an identified face region

Chosen Solutions: A demonstration of the proposed system

> We proudly present: <u>Archadi</u>

The proposed system: general description

Preprocessing: white balance unit

We used an algorithm called "Normalize to White".

White balance coefficients are calculated only once, based on the first frame.

After

Before

Skin color model: our implementation

- > The classifier function is set to: $C(R,G,B)=P_{skin}(R,G,B)/P_{non-skin}(R,G,B)$
- We use an adaptive threshold value based on the mean value of C(R,G,B) calculated over the previous frame.

Skin color model: our implementation

The output of the skin color unit is a binary image of the detected skin pixels.

original frame

skin pixels binary image

Connectivity analysis

- The purpose: extracting geometrically connected skin regions from the binary skin image
- The binary image is first morphologically processed
- A novel computationally inexpensive connectivity analysis algorithm is applied.

Connectivity analysis

The output of the connectivity analysis unit is a list of rectangular connected skin regions

skin pixels binary image

rectangular skin regions

Heuristic rules

- The purpose: selecting the face region, given a list of rectangular skin regions
- The method: Applying heuristic rules
 - Height to Width ratio
 - Region size

- Percentage of skin pixels in region
- Distance from previous face region
- Location of region

The output : detected face region

Face Detection Conclusions

Real-time implementation is the most crucial consideration in the system design

- ➤ Varying lighting conditions and image capture devices force us into using adaptive, image derived, classifiers and parameters
- > The usage of adaptive classifiers creates a problem in establishing a reliable confidence criteria
- There is a constant trade off between coherent tracking & recovery ability

And for the Grand Finale:

We proudly present: <u>Alex</u>