

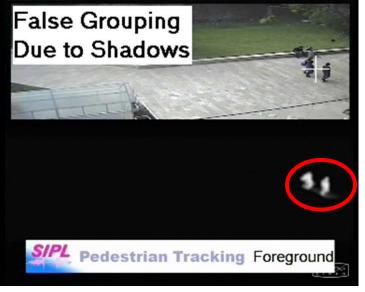
Moving Shadow Detection by Nonlinear Tone-Mapping

Elad Bullkich SIPL - Dept. of EE - Technion Idan Ilan SIPL - Dept. of EE - Technion Yair Moshe SIPL - Dept. of EE - Technion Dr. Hagit Hel-Or Dept. of CS - University of Haifa Prof. Yacov Hel-Or Google Inc. Google

IWSSIP, Vienna, Austria, 11-13 April 2012

Presentation's Outline

- Introducing the problem
- Existing Solutions
- Proposed Solution
- Metric Approximation
- Results
- Conclusion


Introducing the Problem

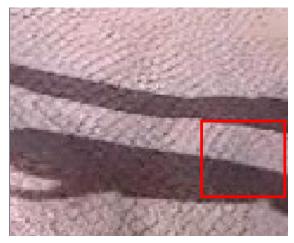
- Surveillance systems perform object segmentation & tracking
- Moving shadows may cause identification failure

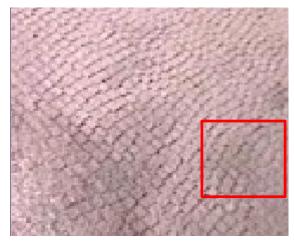
No Detection

Object Merging

Existing Solutions

- Most solutions are not suitable for shadow detection using a low-cost outdoor surveillance camera
 - Solutions are designed for specific conditions
 - May require pre-calibration of camera and scene parameters
 - May use assumptions that are not met in a surveillance scenario
 - Difficult to generalize



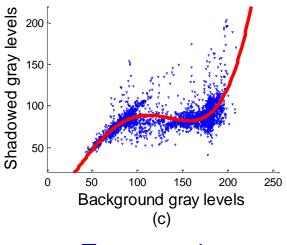

Proposed Solution

• Assumption: Structural content (textures and edges) is preserved from the original non-shadowed scene in shadowed regions

Shadowed

Background

Proposed Solution


• Observation: Non-linear tone mapping between background and shadow

(a) Background

Shadowed

Tone mapping

Shadow Detection Scheme

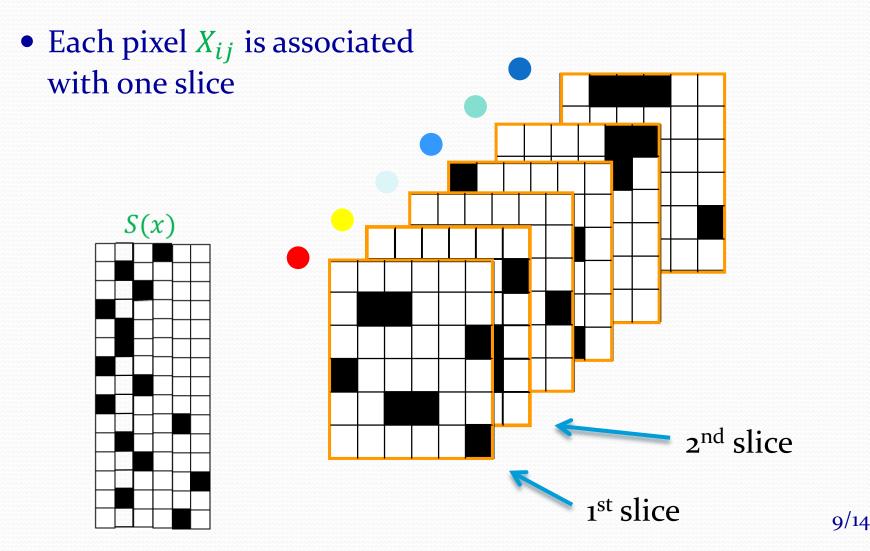
- Use a non-linear tone-mapping-invariant metric termed Matching by Tone Mapping (MTM)
 - Recently proposed by (Hel-Or et al., ICCV 2011)
- Measure MTM between suspected foreground *p* and background *w* pixels:

$$D(p,w) = \min_{\mathcal{M}} \left\{ \frac{\|\mathcal{M}(p) - w\|^2}{m \cdot \operatorname{var}(w)} \right\}$$

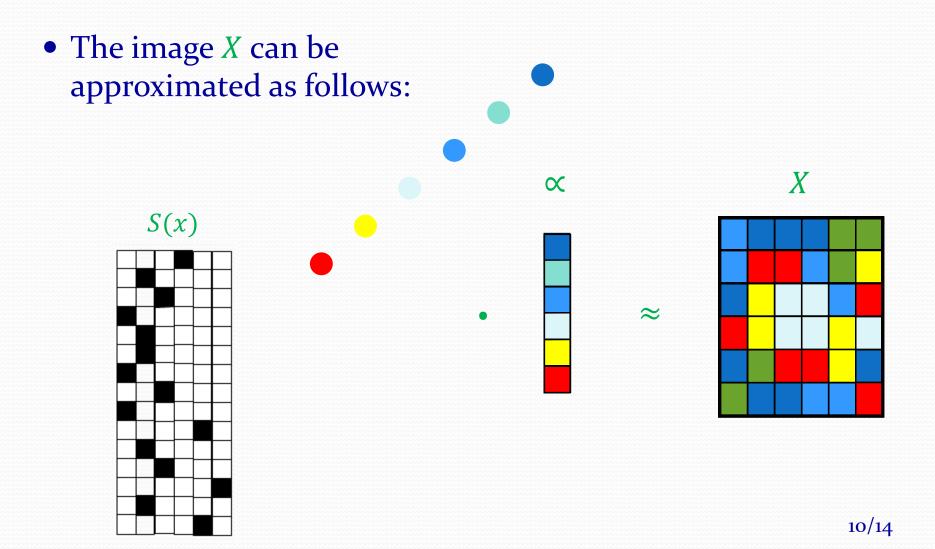
Non-linear mapping

- Can be approximated very efficiently
- Compensates for non-linear mapping
 - Small value 🖈 shadow
 - Large value 🐋 foreground

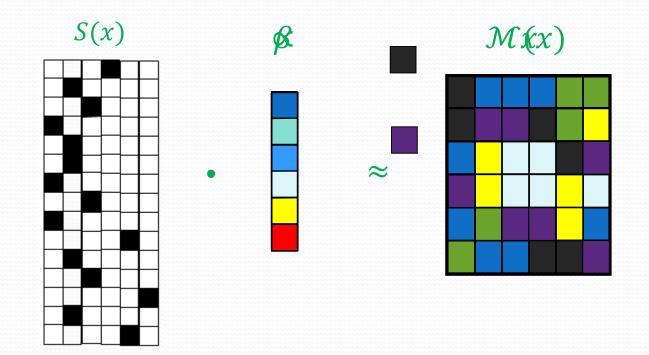
Denominator enforcing scale invariance



• Divide the image into slices X • Each slice represents a range of gray levels



Moving Shadow Detection

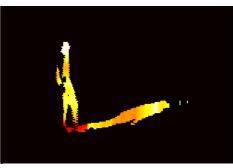

Metric Approximation

• And in the same way we can represent any piece-wise constant mapping of the image

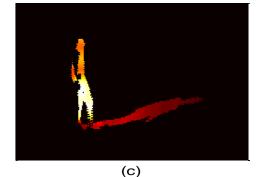
- "Raw" MTM metric: $D(p, w) = \min_{\beta} \left\{ \frac{\|\mathbf{M}(p) w\|^2}{m \cdot \operatorname{var}(w)} \right\}$
- Giving $M(p) \approx S(p)\beta$, the solution for this minimization problem is: $\hat{\beta} = \arg \min_{\beta} ||S\beta - w||^2 = (S^T S)^{-1} S^T w$
- Finally, we get:

$$D(p,w) = \frac{1}{m \cdot \operatorname{var}(w)} \left[\|w\|^2 - \sum_j \frac{1}{|p^j|} (p^j \cdot w)^2 \right]$$

Moving Shadow Detection



Distance Map



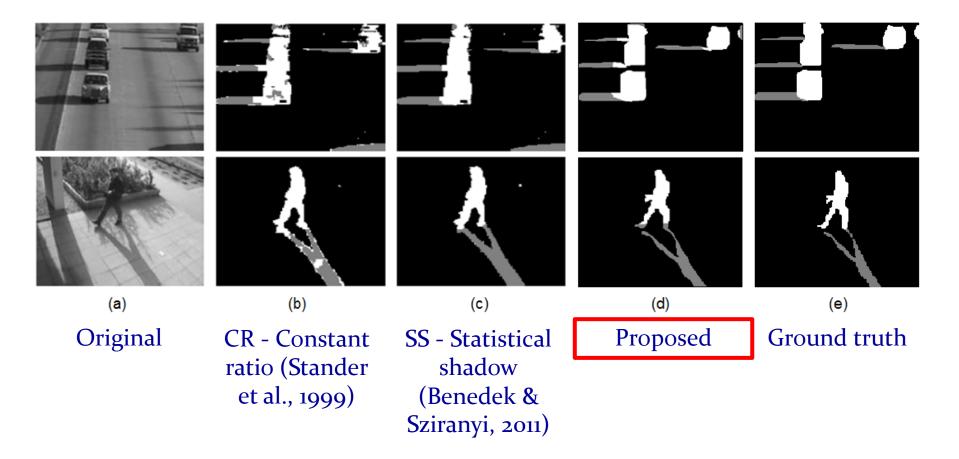
Original

(b)

Distance maps using Normalized Cross Correlation (linear tone mapping)

Distance maps using proposed technique

Clear separation between foreground and shadow


13/16

Moving Shadow Detection

Results

Images are taken from **"SZTAKI Benchmark Set for Foreground and Shadow Detection in Video Sequences**". (<u>http://cvrr.ucsd.edu/aton/shadow/</u>)

Results

• Better than state of the art

	Precision			Recall			F-measure		
Sequence	CR	SS	MTM -PWC	CR	SS	MTM -PWC	CR	SS	MTM -PWC
Highway	0.644	0.805	0.925	0.866	0.890	0.914	0.746	0.845	0.920
Seam	0.596	0.774	0.971	0.946	0.968	0.947	0.731	0.861	0.959
Senoon	0.742	0.833	0.935	0.980	0.963	0.953	0.845	0.894	0.944
Sepm	0.621	0.830	0.908	0.972	0.961	0.914	0.756	0.891	0.911

Conclusion

- A novel moving shadow detection technique
- Based on nonlinear tone mapping between shadows and background
- Uses the Matching by Tone Mapping (MTM) approach for efficiently comparing patches
- $\sqrt{1}$ Low computational complexity
- $\sqrt{\text{Robust}}$
- √ Substantially outperforms state-of-the-art shadow detection techniques in typical surveillance scenarios