

Detection and Tracking of Deforming Objects Using Active Contours

בס"ד

Project Presentation

Kevin Rosenblum, Oded Papish, Meir Hatzvi Supervisor: Oleg Kuybeda In association with: Elbit UAV Systems – Naama Hait, David Lizik

Project Goals

Tracking moving and deforming objects in the presence of:

- □ Noise & Clutter
- □ Occlusions
- The tracking of an object can be separated into:
 - □ Target acquisition
 - □ Tracking the object's parameters evolution

The Object's State

The object state is represented by a *contour* which contains the following information:

 Locally Linear Embedding is a method which incorporates prior knowledge about the shape.

The Bayesian Model

Prediction (propagation):

$$p(\mathbf{s}_{n} | \mathbf{y}_{1:n-1}) = \int p(\mathbf{s}_{n} | \mathbf{s}_{n-1}) p(\mathbf{s}_{n-1} | \mathbf{y}_{1:n-1}) d\mathbf{s}_{n-1}$$

predicted pdf propagation model previous pdf

Measurement Update (weighing):

$$p(\mathbf{s}_{n} | \mathbf{y}_{1:n}) \propto p(\mathbf{y}_{n} | \mathbf{s}_{n}) p(\mathbf{s}_{n} | \mathbf{y}_{1:n-1})$$

current pdf observation predicted pdf probability

Particle Filter

Prediction by Propagation

We propagate the particles of the previous object state according to a *dynamic model*

Weighing

- The observation probability of each particle is defined by:
 - 1. P_{im} : segmentation quality of the contour using "*Bhattacharyya Distance*"
 - 2. P_{mot} : amount of *motion* of the particle

The total weight assigned to each particle:

$$p(\mathbf{y}_n | \mathbf{s}_n) = p_{im}(\mathbf{y}_n | \mathbf{s}_n) p_{mot}(\mathbf{y}_n | \mathbf{s}_n)$$

Bhattacharyya Distance

- We measure the segmentation quality of each contour according to the Bhattacharyya Distance: $B = \int_{T} \sqrt{P_{in}(z)P_{out}(z)}dz$
- It is possible to minimize *B* using variation calculus:

Motion Detection

- We measure the amount of motion of each particle by analyzing the difference image of two consecutive frames.
- It is possible to locate the object using motion detection.

initial difference image

after filtering

motion detection

Tracking Algorithm Scheme

Evolution

First Method of Smart Sampling:

Evolution of the best particles by segmentation:

Target Location Smoothing

- The location of the object and its dynamics are estimated by taking the average location and movement of the cloud of particles.
- This noisy observation is smoothed using a *Kalman Filter*.
- Second method of Smart Sampling:

Sampling a cloud of particles from the Kalman Filter estimation.

Particle Contours

Complete Occlusion

Two Complete Occlusions

Simple Tracking & Complete Occlusion

Tracking a Tractor

Toggle – IR Color Inversion

Future Directions

- Improving the image segmentation
- Integrating prior knowledge about the movement of the camera into the dynamic model & Incorporating image registration
- Real-Time implementation of the algorithm