SinBMI: Estimating BMI from a Single Image
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Abstract—Body mass index is a quantitative measure that relates
an individual’s weight to their height, providing a standardized
indicator of body composition. This metric has been extensively
validated and is considered a reliable biometric tool in medical
evaluations. However, traditional methods to calculate BMI require
direct measurements or self-reported data, which can be time-
consuming and subject to error. Therefore, there is great interest
in non-apparatus and remote BMI measurement approaches. In
this paper, we introduce SinBMI, a novel deep learning model
that estimates human BMI from a single image. SinBMI is more
than an order of magnitude lighter than existing single-image
BMI estimation models, making it highly suitable for mobile
deployment. SinBMI achieves state-of-the-art performance on the
largest dataset to date, with an MAPE of 9.38% and an MAE of
2.92.

I. INTRODUCTION

As health awareness grows globally, BMI has become
a widely used metric for assessing individual health, and
identifying risks associated with underweight and overweight
conditions. The common way to calculate BMI is according
to:

BMI = weight[Kg] .
height[m]?

However, obtaining accurate height and weight measurements
can be time-consuming and prone to errors. Obtaining accurate
physical measurements is challenging in many real-world
scenarios, such as in remote areas or busy clinics. Inaccurate
measurements may lead to misclassifications of health risks,
potentially delaying early intervention for conditions like obe-
sity, cardiovascular disease, or malnutrition. These challenges
motivate the development of alternative approaches for rapid
and reliable BMI estimation.
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II. RELATED WORK

With the growing success of deep learning methods, recent
studies have shown the ability to estimate the BMI from 2D
images. For example, [1] employed convolutional models on
multiple images of the same person but required pose alignment
and was constrained by limited data. Similarly, [2] focused
on facial images with the same limitation. Other approaches
have tackled single-image BMI estimation but relied heavily
on feature extraction, increasing memory and computation
requirements. Furthermore, [3]] used anthropometric, 3D, and
statistical features, requiring multiple pre-trained models, while
[4], the most relevant to our work, used two models: one for

deep features and another for anthropometric features, combin-
ing them for Gaussian Process regression, which is resource-
intensive. In contrast, SinBMI surpasses current models and
achieves state-of-the-art performance, while enabling fast BMI
estimation on mobile devices.

III. PROPOSED SOLUTION

In this paper, we demonstrate the efficacy of an end-to-end
lightweight deep learning model for direct BMI extraction from
a single 2D input image. SinBMI architecture consists of an
EfficientNet-B2 backbone [5]], renowned for its efficiency in
mobile applications. Extensive testing with different backbones
revealed that EfficientNet-B2 offered the best trade-off between
accuracy and resource efficiency. The backbone is followed by
a seven-layer perceptron (MLP), where each layer performs a
linear transformation and applies a GELU activation, iteratively
reducing the 1000-dimensional feature vector to a scalar BMI
prediction (see Fig. [I).
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Fig. 1: SinBMI architecture. We used EfficientNet-B2 fol-
lowed by an MLP that gradually reduced dimensionality to a
scalar BMI prediction.
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We construct our dataset by merging the two largest pub-
licly available BMI datasets. The first, 2D-Image-to-BMI [4],
includes 4,189 images (1,477 males, 2,712 females) sourced
from Reddit posts about dieting. The second, Visual-Body-
to-BMI [6], contains 5,900 images from 2,950 individuals.
Both provide frontal-view RGB images in free poses with
random backgrounds, along with reported height and weight
for BMI calculation. Figure [Z] illustrates the BMI distribution,
which closely follows global trends [7]. However, the dataset
is imbalanced, which may introduce bias into the learning
process, favoring overrepresented BMI ranges.
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Fig. 2: Distribution of BMI values. Note the significantly
reduced image counts at the extreme BMI ranges (BMI < 20
and BMI > 40).

We applied data augmentation [8]] to compensate for this
imbalance and to improve model generalization by introducing
natural variations in image statistics. Transformations included

horizontal flips, additive Gaussian noise, and rotations up to 10°.

These augmentations expanded the dataset to 19,336 images.

IV. REsuLTs

In order to evaluate our method, we use mean average error
(MAE) and mean average percentage error (MAPE), which are
commonly used evaluation metrics [3]], [4)]. During training,
we minimized the mean squared error (MSE) loss between
the predicted BMI and the ground truth. Our training regime
includes Adam optimizer and plateau scheduling for 40 epochs.

TABLE I: BMI estimation results. SinBMI outperforms [3]]
and [4]] across all architectures, with optimal performance using
EfficientNet-B2.

Method Arch. MAE | MAPE [%] | Params [M]

131 Multiple models 3.22 10.27 216.59

4] Multiple models 3.96 13.31 490.14
SinBMI VIT 6.23 18.74 87.25
SinBMI ResNet101 3.14 10.01 45.23
SinBMI MobileNet 3.50 11.22 3.23
SinBMI | EfficientNet-B2 2.92 9.38 9.79

In Table I, we summarize the performance of SinBMI

compared to [3] and [4]. Additionally, we include performance
across alternative architectures. Our findings consistently show
that SinBMI with EfficientNet-B2 outperforms all the methods
compared.

For a more precise evaluation, SinBMI is assessed across
BMI categories, widely recognized by medical and health
authorities. These categories divide the BMI range into five
groups: ‘underweight’ (<18.5), 'normal’ (18.5-25), ’overweight’
(25-30), "obese’ (30—40), and ’extremely obese’ (>40). Figure@
demonstrates strong performance within the BMI range of
18.5-40, which is also the most common in the general
population. However, performance degrades at the edges of
the BMI spectrum due to the limited data in the extreme
categories, which makes it difficult for the model to generalize.

The graphs compare the performance with and without data
augmentation according to the evaluation metrics- MAE
and MAPE. According to both metrics, data augmentation
significantly improves performance.
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Fig. 3: Performance evaluation. Comparison of SinBMI
performance across BMI categories with and without data
augmentation. (a) MAE results, (b) MAPE results.

V. LivE DEMONSTRATION

To demonstrate our system’s efficiency and ease of use, we
will stage a live demo in which participants stand approximately
one meter from a standard webcam connected to a laptop. The
webcam captures a single image that is processed in real time
by our model. The estimated BMI is then immediately displayed
on a dedicated screen, showcasing the speed and accuracy of
our approach.

VI. CoNCLUSIONS

In this paper, we propose SinBMI, an end-to-end deep
learning architecture designed to estimate BMI from a single
image. SinBMI introduces a novel, lightweight, and high-
accuracy approach to BMI estimation, making it well-suited for
deployment on mobile devices. Our model achieves state-of-the-
art MAE and MAPE performance, demonstrating particularly
high accuracy in the most common BMI categories.
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